MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Generalization and properties of the neural response

Author(s)
Wibisono, Andre Yohannes
Thumbnail
DownloadFull printable version (861.1Kb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Tomaso Poggio and Lorenzo Rosasco.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Hierarchical learning algorithms have enjoyed tremendous growth in recent years, with many new algorithms being proposed and applied to a wide range of applications. However, despite the apparent success of hierarchical algorithms in practice, the theory of hierarchical architectures remains at an early stage. In this thesis we study the theoretical properties of hierarchical algorithms from a mathematical perspective. Our work is based on the framework of hierarchical architectures introduced by Smale et al. in the paper "Mathematics of the Neural Response", Foundations of Computational Mathematics, 2010. We propose a generalized definition of the neural response and derived kernel that allows us to integrate some of the existing hierarchical algorithms in practice into our framework. We then use this generalized definition to analyze the theoretical properties of hierarchical architectures. Our analysis focuses on three particular aspects of the hierarchy. First, we show that a wide class of architectures suffers from range compression; essentially, the derived kernel becomes increasingly saturated at each layer. Second, we show that the complexity of a linear architecture is constrained by the complexity of the first layer, and in some cases the architecture collapses into a single-layer linear computation. Finally, we characterize the discrimination and invariance properties of the derived kernel in the case when the input data are one-dimensional strings. We believe that these theoretical results will provide a useful foundation for guiding future developments within the theory of hierarchical algorithms.
Description
Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2010.
 
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Cataloged from student-submitted PDF version of thesis.
 
Includes bibliographical references (p. 79-83).
 
Date issued
2010
URI
http://hdl.handle.net/1721.1/61517
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.