MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Visualization of vibration experienced in offshore platforms

Author(s)
Patrikalakis, Alexander Marinos Charles
Thumbnail
DownloadFull printable version (8.387Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Michael S. Triantafyllou.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
In this thesis, I design and evaluate methods to optimize the visualization of vortex-induced vibration (VIV) in marine risers. VIV is vibration experienced by marine risers in offshore drilling platforms due to ocean current flows, and appears to be perpendicular to the direction of such flows. VIV causes oil companies large capital losses, supply chain disruption, and environmental and brand name damage. For these reasons, both researchers and manufacturers try to improve their models of VIV, while creating risers more resilient to it. The first step to understanding VIV is rapid visualization, ie. the ability to efficiently visualize large amounts of simulated and field data. In this thesis, I evaluate high and low level heuristics that optimize the run-time performance of applications by taking advantage of 64 -bit machines with large memory stores. Such heuristics include the introduction of object-oriented programming (OOP) with classes, dynamic binary loading, and source code management. I demonstrate that using these techniques allows speedups of many orders of magnitude, depending on the type of optimization and the structure of the input data. Finally, I reengineer an existing collection of disparate visualizations to take advantage of these heuristics, and achieve a run-time speedup of two orders of magnitude in most visualizations.
Description
Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2010.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 95-96).
 
Date issued
2010
URI
http://hdl.handle.net/1721.1/61567
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.