MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Novel applications of diffusion-driven flow

Author(s)
Allshouse, Michael R
Thumbnail
DownloadFull printable version (6.931Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Mechanical Engineering.
Advisor
Thomas Peacock.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Diffusion-driven flow is the result of a conflict between hydrostatic equilibrium in a density stratified fluid and the no-flux boundary condition that must be obeyed on impermeable boundaries that are sloping with respect to gravity. This conflict results in a boundary layer flow, and in this thesis we present two novel applications of diffusion-driven flow. First, it is demonstrated that diffusion-driven flow can spontaneously propel asymmetric floating objects. Then, it is shown that the properties of diffusion-driven flow in a fissure can be exploited to make reliable measurements of molecular diffusivity.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2010.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 71-72).
 
Date issued
2010
URI
http://hdl.handle.net/1721.1/61589
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.