Advanced Search
DSpace@MIT

Space exploration challenges : characterization and enhancement of space suit mobility and planetary protection policy analysis

Research and Teaching Output of the MIT Community

Show simple item record

dc.contributor.advisor Dava J. Newman. en_US
dc.contributor.author Holschuh, Bradley Thomas en_US
dc.contributor.other Massachusetts Institute of Technology. Technology and Policy Program. en_US
dc.date.accessioned 2011-04-04T15:48:47Z
dc.date.available 2011-04-04T15:48:47Z
dc.date.copyright 2010 en_US
dc.date.issued 2010 en_US
dc.identifier.uri http://hdl.handle.net/1721.1/62036
dc.description Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics; and, (S.M. in Technology and Policy)--Massachusetts Institute of Technology, Engineering Systems Division, Technology and Policy Program, 2010. en_US
dc.description This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections. en_US
dc.description Cataloged from student-submitted PDF version of thesis. en_US
dc.description Includes bibliographical references (p. 189-193). en_US
dc.description.abstract This thesis addresses two challenges associated with advanced space and planetary exploration: characterizing and improving the mobility of current and future gas pressurized space suits; and developing effective domestic Planetary Protection policies for the emerging private space industry. Gas-pressurized space suits are known to be highly resistive to astronaut movement. As NASA seeks to return to planetary exploration, there is a critical need to improve full body space suit mobility for planetary exploration. Volume effects (the torque required to displace gas due to internal volume change during movement) and structural effects (the additional torque required to bend the suit materials in their pressurized state) are cited as the primary contributors to suit rigidity. Constant volume soft joints have become the design goal of space suit engineers, and simple joints like the elbow are believed to have nearly achieved such performance. However, more complex joints like the shoulder and waist have not yet achieved comparable optimization. As a result, it is hypothesized that joints like the shoulder and waist introduce a third, and not well studied, contributor to space suit rigidity: pressure effects (the additional work required to compress gas in the closed operating volume of the suit during movement). This thesis quantifies the individual contributors to space suit rigidity through modeling and experimentation. An Extravehicular Mobility Unit (EMU) space suit arm was mounted in a -30kPa hypobaric chamber, and both volume and torque measurements were taken versus elbow angle. The arm was tested with both open and closed operating volumes to determine the contribution of pressure effects to total elbow rigidity. These tests were then repeated using a full EMU volume to determine the actual impact of elbow pressure effects on rigidity when connected to the full suit. In both cases, structural and volume effects were found to be primary contributors to elbow joint rigidity, with structural effects dominating at low flexion angles and volume effects dominating at high flexion angles; pressure effects were detected in the tests that used only the volume of the arm, but were found to be a secondary contributor to total rigidity (on average < 5%). These pressure effects were not detected in the tests that used the volume representative of a full EMU. Unexpected structural effects behavior was also measured at high (> 75°) flexion angles, suggesting that the underlying mechanisms of these effects are not yet fully understood, and that current models predicting structural effects behavior do not fully represent the actual mechanisms at work. The detection of pressure effects in the well-optimized elbow joint, even if only in a limited volume, suggests that these effects may prove significant for sub-optimized, larger, multi-axis space suit joints. A novel, fast-acting pressure control system, developed in response to these findings, was found to be capable of mitigating pressure spikes due to volume change (and thus, pressure effects). Implementation of a similar system in future space suit designs could lead to improvements in overall suit mobility. A second study, which focused on the implications of the development of the US private space industry on domestic Planetary Protection policy, is also presented. As signatories of the 1967 Treaty on Principles Governing the Activities of States in the Exploration and Use of Outer Space (commonly known as the Outer Space Treaty), the United States is responsible for implementing Planetary Protection procedures designed to prevent biological contamination of the Solar System, as well as contamination of the Earth by any samples returned from extra-terrestrial bodies. NASA has established policies and procedures to comply with this treaty, and has successfully policed itself independently and autonomously since the signing of the treaty. However, for the first time in the history of the American space program, private entities outside of NASA have developed the capability and interest to send objects into space and beyond Earth orbit, and no current protocol exists to guarantee these profit-minded entities comply with US Planetary Protection obligations (a costly and time-consuming process). This thesis presents a review of US Planetary Protection obligations, including NASA's procedures and infrastructure related to Planetary Protection, and based on these current protocols provides policy architecture recommendations for the emerging commercial spaceflight industry. It was determined that the most effective policy architecture for ensuring public and private compliance with Planetary Protection places NASA in control of all domestic Planetary Protection matters, and in this role NASA is charged with overseeing, supporting, and regulating the private spaceflight industry. The underlying analysis and architecture tradeoffs that led to this recommendation are presented and discussed. en_US
dc.description.statementofresponsibility by Bradley Thomas Holschuh. en_US
dc.format.extent 194 p. en_US
dc.language.iso eng en_US
dc.publisher Massachusetts Institute of Technology en_US
dc.rights M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. en_US
dc.rights.uri http://dspace.mit.edu/handle/1721.1/7582 en_US
dc.subject Aeronautics and Astronautics. en_US
dc.subject Engineering Systems Division. en_US
dc.subject Technology and Policy Program. en_US
dc.title Space exploration challenges : characterization and enhancement of space suit mobility and planetary protection policy analysis en_US
dc.type Thesis en_US
dc.description.degree S.M.in Technology and Policy en_US
dc.description.degree S.M. en_US
dc.contributor.department Massachusetts Institute of Technology. Dept. of Aeronautics and Astronautics. en_US
dc.contributor.department Massachusetts Institute of Technology. Engineering Systems Division. en_US
dc.contributor.department Massachusetts Institute of Technology. Technology and Policy Program. en_US
dc.identifier.oclc 707405503 en_US


Files in this item

Name Size Format Description
707405503.pdf 28.83Mb PDF Preview, non-printable (open to all)
707405503-MIT.pdf 28.83Mb PDF Full printable version (MIT only)

This item appears in the following Collection(s)

Show simple item record

MIT-Mirage