Advanced Search
DSpace@MIT

Delivery, design, and mechanism of antimicrobial peptides

Research and Teaching Output of the MIT Community

Show simple item record

dc.contributor.advisor Gregory N. Stephanopoulos. en_US
dc.contributor.author Chau, Tanguy en_US
dc.contributor.other Massachusetts Institute of Technology. Dept. of Chemical Engineering. en_US
dc.date.accessioned 2011-04-04T16:20:44Z
dc.date.available 2011-04-04T16:20:44Z
dc.date.copyright 2010 en_US
dc.date.issued 2010 en_US
dc.identifier.uri http://hdl.handle.net/1721.1/62063
dc.description Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Chemical Engineering, 2010. en_US
dc.description Cataloged from PDF version of thesis. en_US
dc.description Includes bibliographical references. en_US
dc.description.abstract Each year, 2 million people contract hospital-acquired bacterial infections, which causes the death of 100,000 patients and costs the US healthcare system over $21 billion. These infections have become dangerously resistant to our existing line of antibiotics and are rapidly spreading outside of hospitals and into communities. As molecular targets to develop new antibiotics are becoming exhausted, clinicians and scientist are concerned that antibiotic resistant infections will wipe out most of the major health benefits acquired over the last century. The work described in this thesis develops new antimicrobials strategies against bacterial infections, focusing on antimicrobial peptides (AmPs). We first delivered genes inducing the toxic expression of AmPs and other lytic agents directly into bacteria using re-engineered bacteriophages. Expression of these lytic agents in lysogenic bacteriophages resulted in bactericidal activity, and demonstrated, for the first time, a long-term cidal effect for over 20 hours. We then enhanced the efficacy of our approach by expressing the same agents in lytic bacteriophage, which resulted in complete suppression of the bacterial culture and prevented bacterial regrowth and resistance to bacteriophages. Since a large fraction of medical infections originates at the surface of implantable devices, we developed film coatings that release active AmPs to cover these surfaces and prevent bacterial colonization. We incorporated AmPs in layer-by-layer films and demonstrated that the kinetics of AmP release can be adjusted. These released AmPs still actively prevented bacterial growth and remained non-toxic towards mammalian cells. While natural AmPs have broad activity against pathogens, they are not optimized for a specific antimicrobial function or bacterial target. Thus, researchers have tried for decades to design highly active and specific de novo AmPs. One approach is to design new peptides using conserved motifs identified from the amino acid sequence of natural AmPs. We improved this approach by measuring the antimicrobial activity of a large database of natural AmPs and incorporating this activity information in the design algorithm. This strategy improved the success rate of designing de novo peptides from 45% to 73% and increased the antimicrobial strength of the designed peptides. Finally, we developed new potentiating strategies by studying the mode-of-action of the family of ponericin AmPs. First, we measured their cidal behavior and differentiated bactericidal ponericins from bacteriostatic ones. Using a modified AFM and a microfluidic device, we observed that the action of AmPs led to cellular death through the corrugation of bacterial, while subpopulation of cells resisted the action of the AmPs longer than others. Focusing on the ponericin G1 AmP, we correlated these visual observations with various membrane stress sensing mechanisms. We concluded that bacteria's ability to develop resistance to ponericin G1 requires the sensing and repair of misfolded membrane proteins via the CpxAR system, as well as DNA repair via induction of the SOS response by RecA. Using microarrarys, we showed that ponericin G1 targets tRNA synthetases in the ribosome. Finally, we demonstrated 99.999% killing of antibiotic resistant bacteria by potentiating ponericin G1 with the ribosomal antibiotic kanamycin, whereas no killing is observed when these two agents are applied independently. untreta The PhDCEP capstone requirement finalizes the work of this thesis by analyzing market entry and expansion strategies for an antimicrobial company commercializing genetically engineered bacteriophages. In conclusion, this thesis establishes new advances in the delivery, the design and the potentiation of AmPs in order to eradicate resilient bacterial infections. en_US
dc.description.statementofresponsibility by Tanguy Chau. en_US
dc.format.extent 183 p. en_US
dc.language.iso eng en_US
dc.publisher Massachusetts Institute of Technology en_US
dc.rights M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. en_US
dc.rights.uri http://dspace.mit.edu/handle/1721.1/7582 en_US
dc.subject Chemical Engineering. en_US
dc.title Delivery, design, and mechanism of antimicrobial peptides en_US
dc.title.alternative Delivery, design, and mechanism of AmPs en_US
dc.type Thesis en_US
dc.description.degree Ph.D. en_US
dc.contributor.department Massachusetts Institute of Technology. Dept. of Chemical Engineering. en_US
dc.identifier.oclc 708254012 en_US


Files in this item

Name Size Format Description
708254012.pdf 24.57Mb PDF Preview, non-printable (open to all)
708254012-MIT.pdf 24.57Mb PDF Full printable version (MIT only)

This item appears in the following Collection(s)

Show simple item record

MIT-Mirage