Gate-all-around silicon nanowire MOSFETs : top-down fabrication and transport enhancement techniques
Author(s)
Hashemi, Pouya
DownloadFull printable version (9.374Mb)
Alternative title
Gate-all-around silicon nanowire metal-oxide-semiconductor field-effect transistors : top-down fabrication and transport enhancement techniques
Gate-all-around silicon nanowire CMOS transistors : top-down fabrication and transport enhancement techniques
Gate-all-around silicon nanowire complementary metal-oxide-semiconductors : top-down fabrication and transport enhancement techniques
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Judy L. Hoyt.
Terms of use
Metadata
Show full item recordAbstract
Scaling MOSFETs beyond 15 nm gate lengths is extremely challenging using a planar device architecture due to the stringent criteria required for the transistor switching. The top-down fabricated, gate-all-around architecture with a Si nanowire channel is a promising candidate for future technology generations. The gate-all-around geometry enhances the electrostatic control and hence gate length scalability. In addition, it enables use of an undoped channel, which has the potential to minimize threshold voltage variation due to reduced random dopant fluctuations. However, there is little known about carrier mobility in Si nanowire MOSFETs. Because of the different crystal surface orientations, the nanowire sidewalls are expected to influence carrier transport. In addition, sidewall roughness due to non-ideal lithography and etch processes can degrade the carrier transport. Technological performance boosters are thus required to enhance electron and hole transport. Uniaxial strain engineering and maskless hydrogen thermal annealing are investigated in this thesis to enhance carrier mobility in gate-all-around nanowire MOSFETs. Uniaxial tensile stress of about 2 GPa was incorporated for the first time into suspended Si nanowire channels by a novel lateral relaxation and suspension technique. Gate-all-around strained-Si nanowire n- MOSFETs were fabricated with nanowire widths in the range of 8 to 50 nm and 8 nm body thickness, demonstrating near ideal sub-threshold swing and an enhancement in long-channel current drive and transconductance of approximately 2X for strained-Si nanowires compared to control Si nanowires. Lowfield effective mobility of these devices was extracted using split capacitance-voltage measurements and the two-FET method. The analysis indicates electron mobility enhancement for strained-Si nanowires over their unstrained Si counterparts, as well as over planar SOI, specifically at high inversion charge densities. However, the mobility of these nanowires was shown to decrease with decreasing nanowire width, consistent with reported data on unstrained Si nanowires. A simple analytical model was developed to investigate the contribution of the sidewalls to the nanowire width dependence of the electron mobility. A new design and process technology was developed to accurately investigate the hole mobility of gate-all-around Si nanowires. A conformal high-k/metal gate process, enabling uniform gating of the nanowire perimeter, was combined with a maskless hydrogen thermal anneal to reduce sidewall roughness scattering. Using this optimized process, long-channel devices with ideal sub-threshold swing (~60 mV/dec) and enhanced current drive were demonstrated, indicating the excellent quality of the nanowire/high-? interface and low-roughness sidewalls. Capacitance-voltage characteristics of sub-micron-long Si nanowires were accurately measured and verified by quantum-mechanical simulations. Increased effective hole mobility with decreasing nanowire width was observed down to 12 nm for hydrogen annealed nanowires, attributed to the smooth, high-mobility non-(100) sidewalls.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2010. This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections. Cataloged from PDF version of thesis. Includes bibliographical references (p. 197-214).
Date issued
2010Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer SciencePublisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.