Show simple item record

dc.contributor.advisorPatrick H. Winston and Randall Davis.en_US
dc.contributor.authorRoberts, Jennifer M. (Jennifer Marie)en_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2011-04-25T15:59:05Z
dc.date.available2011-04-25T15:59:05Z
dc.date.copyright2010en_US
dc.date.issued2010en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/62440
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2010.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 161-165).en_US
dc.description.abstractWhen faced with a complex task, humans often identify domain-specific concepts that make the task more tractable. In this thesis, I investigate the formation of domain-specific concepts of this sort. I propose a set of principles for formulating domain-specific concepts, including a new inductive bias that I call the equivalence class principle. I then use the domain of two-player, perfect-information games to test and refine those principles. I show how the principles can be applied in a semiautomated fashion to identify strategically-important visual concepts, discover highlevel structure in a game's state space, create human-interpretable descriptions of tactics, and uncover both offensive and defensive strategies within five deterministic, perfect-information games that have up to forty-two million states apiece. I introduce a visualization technique for networks that discovers a new strategy for exploiting an opponent's mistakes in lose tic-tac-toe; discovers the optimal defensive strategies in five and six men's morris; discovers the optimal offensive strategies in pong hau k'i, tic-tac-toe, and lose tic-tac-toe; simplifies state spaces by up to two orders of magnitude; and creates a hierarchical depiction of a game's state space that allows the user to explore the space at multiple levels of granularity. I also introduce the equivalence class principle, an inductive bias that identifies concepts by building connections between two representations in the same domain. I demonstrate how this principle can be used to rediscover visual concepts that would help a person learn to play a game, propose a procedure for using such concepts to create succinct, human-interpretable descriptions of offensive and defensive tactics, and show that these tactics can compress important information in the five men's morris state space by two orders of magnitude.en_US
dc.description.statementofresponsibilityby Jennifer M. Roberts.en_US
dc.format.extent165 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleUse-driven concept formationen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc711003223en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record