dc.contributor.advisor | Vladimir Bulović. | en_US |
dc.contributor.author | Bruer, Garrett (Garrett A.) | en_US |
dc.contributor.other | Massachusetts Institute of Technology. Dept. of Materials Science and Engineering. | en_US |
dc.date.accessioned | 2011-05-09T15:17:47Z | |
dc.date.available | 2011-05-09T15:17:47Z | |
dc.date.copyright | 2010 | en_US |
dc.date.issued | 2010 | en_US |
dc.identifier.uri | http://hdl.handle.net/1721.1/62673 | |
dc.description | Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 2010. | en_US |
dc.description | Cataloged from PDF version of thesis. | en_US |
dc.description | Includes bibliographical references (p. 107-116). | en_US |
dc.description.abstract | This thesis demonstrates and evaluates the potential application of luminescent quantum dot/polymer solutions on crystalline silicon photovoltaics. After spin coating the QD/polymer onto silicon photodiodes, an increase of 3% in current density was observed. This performance improvement was used to determine the impact application would have on the crystalline silicon photovoltaic supply chain. Supply chain costs were modeled to estimate the segment costs for Sharp's NUU230F3 230W module. The benefits realized by use of cells coated with the QD/polymer solution were then estimated at both the module and the cell segments. Finally, an installation cost model for the residential market was built to determine the impact an increase in efficiency had on total system costs. | en_US |
dc.description.statementofresponsibility | by Garrett Bruer. | en_US |
dc.format.extent | 116 p. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Massachusetts Institute of Technology | en_US |
dc.rights | M.I.T. theses are protected by
copyright. They may be viewed from this source for any purpose, but
reproduction or distribution in any format is prohibited without written
permission. See provided URL for inquiries about permission. | en_US |
dc.rights.uri | http://dspace.mit.edu/handle/1721.1/7582 | en_US |
dc.subject | Materials Science and Engineering. | en_US |
dc.title | Luminescent, quantum dot-based anti-reflective coatings for crystalline silicon photovoltaics | en_US |
dc.type | Thesis | en_US |
dc.description.degree | M.Eng. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Materials Science and Engineering | |
dc.identifier.oclc | 714255124 | en_US |