Show simple item record

dc.contributor.advisorCarl V. Thompson.en_US
dc.contributor.authorShin, Yong Cheol, Ph. D. Massachusetts Institute of Technologyen_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Materials Science and Engineering.en_US
dc.date.accessioned2011-05-09T15:29:19Z
dc.date.available2011-05-09T15:29:19Z
dc.date.copyright2010en_US
dc.date.issued2011en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/62746
dc.descriptionThesis (S.M.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, February 2011.en_US
dc.description"February 2011." Cataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 76-81).en_US
dc.description.abstractPorous anodic aluminum oxide, commonly known as AAO, has been widely used as a scaffold to synthesize nanowires and nanotubes. The porous alumina structure can be obtained from a simple electrochemical oxidation process, applying a positive voltage to an aluminum film placed in an electrolyte, and resulting in the formation of periodically arranged arrays of pores. It is possible to tune pore diameters and pore spacing by adjusting parameters such as the type of electrolyte, the pH, and the applied voltage. Once the barrier oxide is removed from the bottom of the pores, porous alumina that has been formed on conducting substrates can be used for growth of metal nanowires using electrodeposition. We synthesized Au and Pt nanowire arrays on Au or Pt substrates. During electrodeposition, Au nanowires that grew out of the pores developed a pyramidlike faceted shape. This was not observed for overgrown Pt nanowires. To understand this phenomenon, the microstructure and crystallographic characteristics of the overgrown Au and Pt nanowires were studied using SEM, TEM and XRD. It was found that the overgrown Au caps were single crystalline with (111) facets and textured along the [100] direction, while the Au nanowires in the pores were poly-crystalline with a [11 11] texture. Pt nanowires grown in pores were also polycrystalline and had a [111] texture, but the grain size was much smaller than that of the Au. In contrast with Au, no change of texture or microstructure was observed when Pt grew out of pores. The structure change observed for Au involves nucleation of a new crystal with a (100) texture. This is thought to be related to the changes in the overpotential that occur when the Au emerges from the pores.en_US
dc.description.statementofresponsibilityby Yong Cheol Shin.en_US
dc.format.extent81 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMaterials Science and Engineering.en_US
dc.titlePhenomenological study of Au and Pt nanowires grown in porous alumina scaffoldsen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineering
dc.identifier.oclc717581640en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record