dc.contributor.advisor | Bonnie Berger. | en_US |
dc.contributor.author | Trigg, Jason (Jason A.) | en_US |
dc.contributor.other | Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science. | en_US |
dc.date.accessioned | 2011-05-09T15:30:55Z | |
dc.date.available | 2011-05-09T15:30:55Z | |
dc.date.copyright | 2010 | en_US |
dc.date.issued | 2010 | en_US |
dc.identifier.uri | http://hdl.handle.net/1721.1/62757 | |
dc.description | Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2010. | en_US |
dc.description | Cataloged from PDF version of thesis. | en_US |
dc.description | Includes bibliographical references (p. 26). | en_US |
dc.description.abstract | The Multicoil-HMM algorithm offers improved prediction of coiled-coil oligomerization state. The algorithm combines the pairwise correlations of the Multicoil method with the flexibility of HMM methods. The resulting method incorporates predictors deemed important by a multinomial logistic regression to distinguish between the dimer, trimer and non-coiled coil oligomerization states. The Multicoil-HMM algorithm shows significantly improved oligomer state prediction over a retrained Multicoil algorithm, which is currently the state-of-the-art. The general strategy of using multinomial regression on predictors that can be simulated by HMMs while abandoning the probabilistic interpretation of HMMs may be useful in other machine learning applications. | en_US |
dc.description.statementofresponsibility | by Jason Trigg. | en_US |
dc.format.extent | 26 p. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Massachusetts Institute of Technology | en_US |
dc.rights | M.I.T. theses are protected by
copyright. They may be viewed from this source for any purpose, but
reproduction or distribution in any format is prohibited without written
permission. See provided URL for inquiries about permission. | en_US |
dc.rights.uri | http://dspace.mit.edu/handle/1721.1/7582 | en_US |
dc.subject | Electrical Engineering and Computer Science. | en_US |
dc.title | Multicoil-HMM : improved prediction of coiled-coil oligomer state from sequence | en_US |
dc.title.alternative | Multicoil-Hidden Markov Model | en_US |
dc.type | Thesis | en_US |
dc.description.degree | M.Eng. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science | |
dc.identifier.oclc | 717726195 | en_US |