Show simple item record

dc.contributor.advisorErich P. Ippen.en_US
dc.contributor.authorDahlem, Marcusen_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2011-05-23T18:12:23Z
dc.date.available2011-05-23T18:12:23Z
dc.date.copyright2011en_US
dc.date.issued2011en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/63068
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2011.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 267-285).en_US
dc.description.abstractElectronic-photonic integrated circuits (EPICs) are a promising technology for overcoming bandwidth and power-consumption bottlenecks of traditional integrated circuits. Silicon is a good candidate for building such devices, due to its high-index contrast and low propagation loss at telecom wavelengths. The current thesis presents recent advances in demonstrating discrete components built in silicon-on-insulator (SOI) platforms, around 1550 nm, that can be used as building blocks for future EPIC systems. The first part of this thesis investigates electro-optic modulators based on one-dimensional photonic crystal microcavities, with femtojoule switching energies, as well as on-chip optical interconnects using the super-collimation effect in two-dimensional photonic crystals, both in hole- and rod-based configurations. The second part focuses on microring-based structures, demonstrating wide thermal tunability and hitless operation of single-ring filters, as well as three more advanced categories of devices suitable for wavelength-division multiplexing (WDM) applications. These are twenty-channel second-order tunable filterbanks (both in dual- and counter-propagating configurations), reconfigurable optical add-drop multiplexers (ROADMs) with telecom-grade specifications, and a dynamical slow light cell for delay lines and optical memory elements. All the devices demonstrated in this thesis can be integrated on the same chip. The small device footprints and the use of the SOI platform are ideal for integration with a standard CMOS process, enabling the fabrication of novel electronic-photonic integrated circuits. These new EPIC systems may one day play an important role in the scaling of current computing systems and taking advantage of the WDM capability to increase operational bandwidth, while keeping the power consumption at low levels.en_US
dc.description.statementofresponsibilityby Marcus Dahlem.en_US
dc.format.extent311 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleStudies of advanced integrated nano-photonic devices in siliconen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc725883952en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record