Show simple item record

dc.contributor.advisorMyron Spector.en_US
dc.contributor.authorKearney, Cathal (Cathal John)en_US
dc.contributor.otherHarvard University--MIT Division of Health Sciences and Technology.en_US
dc.date.accessioned2011-05-23T18:14:49Z
dc.date.available2011-05-23T18:14:49Z
dc.date.copyright2011en_US
dc.date.issued2011en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/63082
dc.descriptionThesis (Ph. D.)--Harvard-MIT Division of Health Sciences and Technology, 2011.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 211-225).en_US
dc.description.abstractThe cambium cells of the periosteum, which are known osteoprogenitor cells, have limited suitability for clinical applications of bone tissue engineering due to their low cell number (2-5 cells thick). Extracorporeal shock waves (ESWs) have been reported to cause thickening of the cambium layer and subsequent periosteal osteogenesis. This work proposes that ESW-therapy can be used as a non-invasive, inexpensive, and rapid method for stimulating cambium cell proliferation, and investigates the use of these cells for orthotopic bone growth. The response of periosteal cells to ESWs was evaluated using two different energy densities applied to either the intact femur or tibia of the rat. Just four days after application of ESWs, there was a significant 3- to 6-fold increase in cambium cell number and thickness. The most effective treatment of those tested was high dose ESW applied to the tibia. Immunohistochemical staining of the proliferated cells demonstrated osteoblasts and bone formation (osteocalcin stain); it also demonstrated extensive vonWillebrand factor expression, which reveals the vascular contribution to the proliferating cambium layer. In a rabbit model, ESW-thickened cambium layer cells were overlaid in situ on a porous calcium phosphate scaffold. At two weeks post-surgery, there was a significant increase in all outcome variables for the ESW-treated group when compared with controls: a 4-fold increase in osteoprogenitor tissue in the scaffold upper half, a 10- fold increase in osteoprogenitor tissue above the scaffold, and a 2-fold increase in callus size. The results successfully demonstrated the efficacy of ESW-stimulated periosteum for bone tissue engineering.en_US
dc.description.statementofresponsibilityby Cathal John Kearney.en_US
dc.format.extent225 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectHarvard University--MIT Division of Health Sciences and Technology.en_US
dc.titleNon-invasive shock wave stimulated periosteum for bone tissue engineeringen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentHarvard University--MIT Division of Health Sciences and Technology
dc.identifier.oclc725945403en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record