Show simple item record

dc.contributor.advisorHenry S. Marcus and Stephen C. Graves.en_US
dc.contributor.authorRose, Robin Sebastian Koskeen_US
dc.contributor.otherMassachusetts Institute of Technology. Computation for Design and Optimization Program.en_US
dc.date.accessioned2011-06-20T15:54:56Z
dc.date.available2011-06-20T15:54:56Z
dc.date.copyright2011en_US
dc.date.issued2011en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/64580
dc.descriptionThesis (S.M.)--Massachusetts Institute of Technology, Computation for Design and Optimization Program, 2011.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 101-104).en_US
dc.description.abstractThe objective of this thesis is to examine trends in Offshore Support Vessel (OSV) design and determine the future characteristics of OSVs based on industry insight and supply chain models. Specifically, this thesis focuses on Platform Supply Vessels (PSVs) and the advantages of certain design characteristics are analyzed by modeling representative offshore exploration and production scenarios and selecting support vessels to minimize costs while meeting supply requirements. A review of current industry practices and literature suggests that offshore exploration and production activities will move into deeper water further from shore and as a result supply requirements will increase significantly. A review of the current fleet and orderbook reveal an aging fleet of traditional vessels with little deepwater capabilities and a growing, young fleet of advanced vessels capable of deepwater support. A single-vessel supply chain analysis shows that traditional vessels outperform larger vessels for shallow-water resupply activities, while modern vessels and vessels significantly larger than modern vessels are more cost-effective for deepwater operations. As offshore oilfield supply is more complicated than a single vessel supplying a single platform, we develop a mixed integer linear program model of the fleet selection process and implement it on representative offshore exploration and production scenarios. The model is used to evaluate the cost-effectiveness of representative vessels and the value of flexibility in vessel design for the oilfield operator. Incorporating industry insight into the results from the supply chain analyses, this study concludes that a) offshore exploration and production will move further offshore into deeper water, b) OSVs will become significantly larger both in response to the increased cargo need as well as to meet upcoming regulations, c) crew transfer will continue to be done primarily by helicopter, d) OSVs will become significantly more fuel efficient, e) high-specification, flexible OSV designs will continue to be built, and f) major oil companies will focus on safety and redundancy in OSV designs.en_US
dc.description.statementofresponsibilityby Robin Sebastian Koske Rose.en_US
dc.format.extent104 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectComputation for Design and Optimization Program.en_US
dc.titleFuture characteristics of Offshore Support Vesselsen_US
dc.title.alternativeFuture characteristics of OSVsen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computation for Design and Optimization Program
dc.identifier.oclc727052552en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record