MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Organic molecular floating gate memories

Author(s)
Paydavosi, Sarah
Thumbnail
DownloadFull printable version (6.530Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Vladimir Bulović.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Flash memory devices dominate the non-volatile memory market, with device structures that utilize charge storage in polysilicon floating gates imbedded in insulating silicon oxide films'. As demands for high storage density, high chip memory capacity, and decreasing process costs continue to mount, conventional flash memory has found it challenging to continue scaling and it may reach fundamental scaling limits because of the minimum tunnel oxide thickness and poor charge retention due to defects in the tunneling oxide, necessitating modification in the implementation of the flash memory technology . In this study nano-segmented floating gate memories consisting of a uniform set of identical organic dye molecules were fabricated and evaluated for potential use as programmable charge storage and charge retention elements in a future flash memory technology. Viability of molecular thin films to serve as an energetically-uniform set of ~1nm in size charge- retaining sites is tested on a series of molecular materials, the best performing of which are thermally evaporated thin films of 3,4,9,10- perylenetetracarboxylic bis-benzimidazole (PTCBI). The initial results show device durability over 105 program/erase cycles, with hysteresis window of up to 3.3V, corresponding to charge storage density as high as 5 x 1012 cm2. Data shows that charge retention is improved for molecular films with lower carrier mobility, which for the first time experimentally confirms in a coherent material set that inhibiting charge transport by nano-segmented floating-gate structures benefits the memory retention. These results show a first step towards a possible approach to miniaturization of non-volatile memory by using molecules as segmented charge storage elements in the floating gate flash memory technology.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2011.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 42-45).
 
Date issued
2011
URI
http://hdl.handle.net/1721.1/64591
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.