MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Racing line optimization

Author(s)
Xiong, Ying, S.M. Massachusetts Institute of Technology
Thumbnail
DownloadFull printable version (3.582Mb)
Other Contributors
Massachusetts Institute of Technology. Computation for Design and Optimization Program.
Advisor
Gilbert Strang.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Although most racers are good at controlling their cars, world champions are always talented at choosing the right racing line while others mostly fail to do that. Optimal racing line selection is a critical problem in car racing. However, currently it is strongly based on the intuition of experienced racers after they conduct repeated real-time experiments. It will be very useful to have a method which can generate the optimal racing line based on the given racing track and the car. This paper explains four methods to generate optimal racing lines: the Euler spiral method, artificial intelligence method, nonlinear programming solver method and integrated method. Firstly we study the problem and obtain the objective functions and constraints for both 2-D and 3-D situations. The mathematical and physical features of the racing tracks are studied. Then we try different ways of solving this complicated nonlinear programming problem. The Euler spiral method generates Euler spiral curve turns at corners and it gives optimal results fast and accurately for 2-D corners with no banking. The nonlinear programming solver method is based on the MINOS solver on AMPL and the MATLAB Optimization Toolbox and it only needs the input of the objective function and constraints. A heavy emphasis is placed on the artificial intelligence method. It works well for any 2-D or 3-D track shapes. It uses intelligent algorithms including branch-cutting and forward-looking to give optimal racing lines for both 2-D and 3-D tracks. And the integrated method combines methods and their advantages so that it is fast and practical for all situations. Different methods are compared, and their evolutions towards the optimum are described in detail. Convenient display software is developed to show the tracks and racing lines for observation. The approach to finding optimal racing lines for cars will be also helpful for finding optimal racing lines for bicycle racing, ice skating and skiing.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Computation for Design and Optimization Program, 2010.
 
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Cataloged from student-submitted PDF version of thesis.
 
Includes bibliographical references (p. 112-113).
 
Date issued
2010
URI
http://hdl.handle.net/1721.1/64669
Department
Massachusetts Institute of Technology. Computation for Design and Optimization Program
Publisher
Massachusetts Institute of Technology
Keywords
Computation for Design and Optimization Program.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.