MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Design and engineering of low-cost centimeter-scale repeatable and accurate kinematic fixtures for nanomanufacturing equipment using magnetic preload and potting

Author(s)
Watral, Adrienne
Thumbnail
DownloadFull printable version (21.65Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Mechanical Engineering.
Advisor
Martin L. Culpepper.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
This paper introduces a low-cost, centimeter-scale kinematic coupling fixture for use in nanomanufacturing equipment. The fixture uses magnetic circuit design techniques to optimize the magnetic preload required to achieve repeatability on the order of 100 nanometers. The fixture achieves accuracy to within one micrometer via an adjustable interface composed of UV curing adhesive between the mating kinematic coupling components. The fixture is monitored by a micro-vision system and moved by a six-axis nanopositioner until proper alignment is achieved, at which point the fixture position is permanently set by UV light. This thesis presents design rules and insights for design of a general accurate and repeatable kinematic fixture and presents a case study of fixtures used for tool exchange on dip pen nanolithography machines. A prototype fixturing assembly was fabricated and tested for repeatability and stability in six degrees of freedom. The test results concluded that the fixture has a 1-o- 3-D translational repeatability of 87 nanometers and a 3-D stability of 344 nanometers over 48 hours. This is an order of magnitude improvement on past low-cost accurate and repeatable fixture designs. This optimized accurate and repeatable kinematic fixture will enable repeatable, accurate, quick, and elegant tool change, thus advancing the manufacturing capabilities of nanofabrication techniques.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, February 2011.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 127-130).
 
Date issued
2011
URI
http://hdl.handle.net/1721.1/65317
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.