Show simple item record

dc.contributor.advisorGregory McRae.en_US
dc.contributor.authorHu, Kenneth Ten_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Chemical Engineering.en_US
dc.date.accessioned2011-09-13T17:48:52Z
dc.date.available2011-09-13T17:48:52Z
dc.date.copyright2011en_US
dc.date.issued2011en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/65760
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Chemical Engineering, 2011.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 317-322).en_US
dc.description.abstractEngineering design work relies on the ability to predict system performance. A great deal of effort is spent producing models that incorporate knowledge of the underlying physics and chemistry in order to understand the relationship between system inputs and responses. Although models can provide great insight into the behavior of the system, actual design decisions cannot be made based on predictions alone. In order to make properly informed decisions, it is critical to understand uncertainty. Otherwise, there cannot be a quantitative assessment of which predictions are reliable and which inputs are most significant. To address this issue, a new design method is required that can quantify the complex sources of uncertainty that influence model predictions and the corresponding engineering decisions. Design of experiments is traditionally defined as a structured procedure to gather information. This thesis reframes design of experiments as a problem of quantifying and managing uncertainties. The process of designing experimental studies is treated as a statistical decision problem using Bayesian methods. This perspective follows from the realization that the primary role of engineering experiments is not only to gain knowledge but to gather the necessary information to make future design decisions. To do this, experiments must be designed to reduce the uncertainties relevant to the future decision. The necessary components are: a model of the system, a model of the observations taken from the system, and an understanding of the sources of uncertainty that impact the system. While the Bayesian approach has previously been attempted in various fields including Chemical Engineering the true benefit has been obscured by the use of linear system models, simplified descriptions of uncertainty, and the lack of emphasis on the decision theory framework. With the recent development of techniques for Bayesian statistics and uncertainty quantification, including Markov Chain Monte Carlo, Polynomial Chaos Expansions, and a prior sampling formulation for computing utility functions, such simplifications are no longer necessary. In this work, these methods have been integrated into the decision theory framework to allow the application of Bayesian Designs to more complex systems. The benefits of the Bayesian approach to design of experiments are demonstrated on three systems: an air mill classifier, a network of chemical reactions, and a process simulation based on unit operations. These case studies quantify the impact of rigorous modeling of uncertainty in terms of reduced number of experiments as compared to the currently used Classical Design methods. Fewer experiments translate to less time and resources spent, while reducing the important uncertainties relevant to decision makers. In an industrial setting, this represents real world benefits for large research projects in reducing development costs and time-to-market. Besides identifying the best experiments, the Bayesian approach also allows a prediction of the value of experimental data which is crucial in the decision making process. Finally, this work demonstrates the flexibility of the decision theory framework and the feasibility of Bayesian Design of Experiments for the complex process models commonly found in the field of Chemical Engineering.en_US
dc.description.statementofresponsibilityby Kenneth T. Hu.en_US
dc.format.extent322 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectChemical Engineering.en_US
dc.titleBayesian design of experiments for complex chemical systemsen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineering
dc.identifier.oclc749123994en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record