dc.contributor.advisor | Duane S. Boning. | en_US |
dc.contributor.author | GoGwilt, Cai P. (Cai Peter) | en_US |
dc.contributor.other | Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science. | en_US |
dc.date.accessioned | 2011-10-17T21:23:55Z | |
dc.date.available | 2011-10-17T21:23:55Z | |
dc.date.copyright | 2011 | en_US |
dc.date.issued | 2011 | en_US |
dc.identifier.uri | http://hdl.handle.net/1721.1/66419 | |
dc.description | Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2011. | en_US |
dc.description | Cataloged from PDF version of thesis. | en_US |
dc.description | Includes bibliographical references (p. 67-68). | en_US |
dc.description.abstract | Nanoimprint lithography (NIL) is a method for fabricating nano-scale patterns by pressing stamps into viscous materials. A key barrier to industry adoption of NIL is the inability to predict whether a stamp will imprint successfully and how long the process should be run for. In this thesis, we help quantify the accuracy loss for an existing simulation package, simprint, which supports geometric abstractions and can simulate at the die level. To do this, we develop and study several comparison metrics. Our temporal submetric quantifies the error between two simulations at each timestep, while our spatial submetric quantifies the error at each spatial location. We subsequently use these metrics to study pattern abstraction by looking at how different types of patterns lead to different errors. This would allow us to suggest pattern abstractions that could improve the accuracy of a simulation. However, none of the features we study correlate with error. We conclude by exploring other possible uses of our metrics. | en_US |
dc.description.statementofresponsibility | by Cai P. GoGwilt. | en_US |
dc.format.extent | 68 p. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Massachusetts Institute of Technology | en_US |
dc.rights | M.I.T. theses are protected by
copyright. They may be viewed from this source for any purpose, but
reproduction or distribution in any format is prohibited without written
permission. See provided URL for inquiries about permission. | en_US |
dc.rights.uri | http://dspace.mit.edu/handle/1721.1/7582 | en_US |
dc.subject | Electrical Engineering and Computer Science. | en_US |
dc.title | The effects of feature geometry on simulating nanoimprint lithography | en_US |
dc.type | Thesis | en_US |
dc.description.degree | M.Eng. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science | |
dc.identifier.oclc | 755095881 | en_US |