dc.contributor.advisor | Stephanie Seneff. | en_US |
dc.contributor.author | Li, Yueyang Alice | en_US |
dc.contributor.other | Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science. | en_US |
dc.date.accessioned | 2011-10-17T21:25:56Z | |
dc.date.available | 2011-10-17T21:25:56Z | |
dc.date.copyright | 2011 | en_US |
dc.date.issued | 2011 | en_US |
dc.identifier.uri | http://hdl.handle.net/1721.1/66437 | |
dc.description | Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2011. | en_US |
dc.description | Cataloged from PDF version of thesis. | en_US |
dc.description | Includes bibliographical references (p. 85-92). | en_US |
dc.description.abstract | We address the problem of information accessibility for patients concerned about, pharmaceutical drug side effects and experiences. We create a new corpus of online patient-provided drug reviews and present our initial experiments on that corpus. We detect biases in term distributions that show a statistically significant association between a class of cholesterol-lowering drugs called statins, and a wide range of alarming disorders, including depression, memory loss, and heart failure. We also develop an initial language model for speech recognition in the medical domain, with transcribed data on sample patient comments collected with Amazon Mechanical Turk. Our findings show that patient-reported drug experiences have great potential to empower consumers to make more informed decisions about medical drugs, and our methods will be used to increase information accessibility for consumers. | en_US |
dc.description.statementofresponsibility | by Yueyang Alice Li. | en_US |
dc.format.extent | 92 p. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Massachusetts Institute of Technology | en_US |
dc.rights | M.I.T. theses are protected by
copyright. They may be viewed from this source for any purpose, but
reproduction or distribution in any format is prohibited without written
permission. See provided URL for inquiries about permission. | en_US |
dc.rights.uri | http://dspace.mit.edu/handle/1721.1/7582 | en_US |
dc.subject | Electrical Engineering and Computer Science. | en_US |
dc.title | Medical data mining : improving information accessibility using online patient drug reviews | en_US |
dc.title.alternative | Improving information accessibility using online patient drug reviews | en_US |
dc.type | Thesis | en_US |
dc.description.degree | M.Eng. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science | |
dc.identifier.oclc | 755631510 | en_US |