MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Unsupervised methods for speaker diarization

Author(s)
Shum, Stephen (Stephen Hin-Chung)
Thumbnail
DownloadFull printable version (11.83Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
James R. Glass and Najim Dehak.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Given a stream of unlabeled audio data, speaker diarization is the process of determining "who spoke when." We propose a novel approach to solving this problem by taking advantage of the effectiveness of factor analysis as a front-end for extracting speaker-specific features and exploiting the inherent variabilities in the data through the use of unsupervised methods. Upon initial evaluation, our system achieves state-of-the art results of 0.9% Diarization Error Rate in the diarization of two-speaker telephone conversations. The approach is then generalized to the problem of K-speaker diarization, for which we take measures to address issues of data sparsity and experiment with the use of the von Mises-Fisher distribution for clustering on a unit hypersphere. Our extended system performs competitively on the diarization of conversations involving two or more speakers. Finally, we present promising initial results obtained from applying variational inference on our front-end speaker representation to estimate the unknown number of speakers in a given utterance.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2011.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 93-95).
 
Date issued
2011
URI
http://hdl.handle.net/1721.1/66478
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.