Show simple item record

dc.contributor.advisorJerome J. Connor.en_US
dc.contributor.authorGillis, Andrew Nicholasen_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Civil and Environmental Engineering.en_US
dc.date.accessioned2011-11-01T19:50:17Z
dc.date.available2011-11-01T19:50:17Z
dc.date.copyright2011en_US
dc.date.issued2011en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/66832
dc.descriptionThesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering, 2011.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 54-55).en_US
dc.description.abstractThe social and political climate of the modern world has lead to increased concern over the ability of engineered structures to resist blast events which may be incurred during terrorist attacks. While blast resistance design has been prominent for years in the industrial and military setting, it is starting to gain importance for structures which have been traditionally designed for aesthetics and which have high occupancy density. In these situations it is important that not only materials but the geometry of the building be optimized to reduce the effects of such an attack. However, designing a structure only for prescribed code requirements does not necessarily give a prediction of the post-blast behavior of the structure. Similar to the use of performance-based engineering for seismic events, the effects on a structure designed for blast loading should not be speculative but rather should exhibit expected behavior which is appropriate for the parameters of the given blast. Accounting for uncertainty of a potential blast event by assessing the structure in a probabilistic approach may lead to a more prudent and predictable assessment of damage and loss for the owner. The work herein attempts to provide an overview of the precedent of use of probabilistic methods in structural engineering, the current state of practice in blast engineering and set forth a framework and example by which probabilistic methods may be extended to blast considerations.en_US
dc.description.statementofresponsibilityby Andrew Nicholas Gillis.en_US
dc.format.extent55 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectCivil and Environmental Engineering.en_US
dc.titleUse of probabilistic methods in evaluating blast performance of structuresen_US
dc.typeThesisen_US
dc.description.degreeM.Eng.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Civil and Environmental Engineering
dc.identifier.oclc757545720en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record