Show simple item record

dc.contributor.advisorVladimir M. Stojanović and Anantha P. Chandrakasan.en_US
dc.contributor.authorChen, Fred (Fred Fu-Chin)en_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2012-01-12T19:27:36Z
dc.date.available2012-01-12T19:27:36Z
dc.date.copyright2011en_US
dc.date.issued2011en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/68437
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2011.en_US
dc.descriptionCataloged from PDF version of thesis. Page 184 blank.en_US
dc.descriptionIncludes bibliographical references (p. 171-183).en_US
dc.description.abstractAdoption of wireless sensor network (WSN) technology could enable improved efficiency across a variety of industries that include building management, agriculture, transportation, and health care. Most of the technical challenges of WSNs can be linked to the stringent energy constraints of each sensor node, where wireless communication and leakage energy are the doninant components of active and idle energy costs. To address these two limitations, this thesis adopts compressed sensing (CS) theory as a generic source coding framework to minimize the transmitted data and proposes the use of micro-electro-mechanical (MEM) relay technology to eliminate the idle leakage. To assess the practicality of adopting CS as a source coding framework we examine the inpact of finite resources, input noise, and wireless channel impairments on the compression and reconstruction performance of CS. We show that CS, despite being a lossy compression algorithm, can realize compression factors greater than loX with no loss in fidelity for sparse signals quantized to medium resolutions. We also model the hardware costs for implementing the CS encoder and results from a test chip designed in a 90 nm CMOS process that consumes only 1.9 [mu]W for operating frequencies below 20 kHz, verifies the models. The encoder is desioned to enable continuous, on-the-fly compression that is demonstrated on electroencephalography (EEG) and electrocardiogram (EKG) signals to show the applicability of CS. To address sub-threshold leakage, which limits the energy performance in CMOS-based sensor nodes, we develop design methodologies towards leveraging the zero leakage characteristics of MEM relays while overcoming their slower switching speeds. Projections on scaled relay circuits show the potential for greater than loX improvements in energy efficieicy over CMOS at up to 10-100 Mops for a variety of circuit sub-systems. Experimental results demonstrating functionality for several circuit building blocks validate the viability of the technology, while feedback from these results is used to refine the device design. Incorporating all of the design elements, w present simnulation results for our most recent test chip design which implements relay-based versions of the CS encoder circuits in a 0.25 jim lithographic process showing 5X improvement over our 90 nm CMOS design.en_US
dc.description.statementofresponsibilityby Fred Chen.en_US
dc.format.extent184 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleEnergy-efficient wireless sensors : fewer bits, Moore MEMSen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc768861095en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record