MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Algorithms for discrete, non-linear and robust optimization problems with applications in scheduling and service operations

Author(s)
Mittal, Shashi, Ph. D. Massachusetts Institute of Technology
Thumbnail
DownloadFull printable version (487.0Kb)
Other Contributors
Massachusetts Institute of Technology. Operations Research Center.
Advisor
Andreas S. Schulz.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
This thesis presents efficient algorithms that give optimal or near-optimal solutions for problems with non-linear objective functions that arise in discrete, continuous and robust optimization. First, we present a general framework for designing approximation schemes for combinatorial optimization problems in which the objective function is a combination of more than one function. Examples of such problems include those in which the objective function is a product or ratio of two or more linear functions, parallel machine scheduling problems with the makespan objective, robust versions of weighted multi-objective optimization problems, and assortment optimization problems with logit choice models. For many of these problems, we give the first fully polynomial time approximation scheme using our framework. Next, we present approximation schemes for optimizing a rather general class of non-linear functions of low rank over a polytope. In contrast to existing results in the literature, our approximation scheme does not require the assumption of quasi-concavity of the objective function. For the special case of minimizing a quasi-concave function of low-rank, we give an alternative algorithm which always returns a solution which is an extreme point of the polytope. This algorithm can also be used for combinatorial optimization problems where the objective is to minimize a quasi-concave function of low rank. We also give complexity-theoretic results with regards to the inapproximability of minimizing a concave function over a polytope. Finally, we consider the problem of appointment scheduling in a robust optimization framework. The appointment scheduling problem arises in many service operations, for example health care. For each job, we are given its minimum and maximum possible execution times. The objective is to find an appointment schedule for which the cost in the worst case scenario of the realization of the processing times of the jobs is minimized. We present a global balancing heuristic, which gives an easy to compute closed form optimal schedule when the underage costs of the jobs are non-decreasing. In addition, for the case where we have the flexibility of changing the order of execution of the jobs, we give simple heuristics to find a near-optimal sequence of the jobs.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Sloan School of Management, Operations Research Center, 2011.
 
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Cataloged from student submitted PDF version of thesis.
 
Includes bibliographical references (p. 101-107).
 
Date issued
2011
URI
http://hdl.handle.net/1721.1/68701
Department
Massachusetts Institute of Technology. Operations Research Center; Sloan School of Management
Publisher
Massachusetts Institute of Technology
Keywords
Operations Research Center.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.