Show simple item record

dc.contributor.advisorKripa K. Varanasi.en_US
dc.contributor.authorSmith, Jonathan David, S.M. Massachusetts Institute of Technologyen_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Mechanical Engineering.en_US
dc.date.accessioned2012-03-16T16:02:55Z
dc.date.available2012-03-16T16:02:55Z
dc.date.copyright2011en_US
dc.date.issued2011en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/69783
dc.descriptionThesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2011.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 25-27).en_US
dc.description.abstractClathrate hydrate formation and subsequent plugging of deep-sea oil and gas pipelines represent a significant bottleneck for ultra deep-sea production. Current methods for hydrate mitigation focus on injecting thermodynamic or kinetic inhibitors into the flow, heating the pipe walls, or managing the flow of formed hydrates. These methods are expensive and energy intensive. An alternative approach involves reducing the adhesion of hydrates to surfaces, ideally to a low enough level that the force of flow detaches them and prevents plug formation. Systematic and quantitative studies of hydrate adhesion on smooth surfaces with varying energies were conducted. Surface energies were quantified using van Oss-Chaudhury-Good analysis of advancing and receding contact angles of polar and nonpolar fluids. The strengths of hydrate adhesion to these surfaces were measured using a custom-built testing apparatus, and greater than 75% reduction in adhesion strength of Tetrahydrofuran hydrate was achieved on treated surfaces compared with bare steel. This reduction is achievable on surfaces characterized by low Lewis acid, Lewis base, and van der Waals contributions to surface free energy such that the work of adhesion is minimized. Hydrate adhesion strength was correlated with the practical work of adhesion, i.e. with [gamma]₁(1 + cos [theta]rec) , of a suitable probe fluid, that is, one with similar surface energy properties to those of the hydrate. These fundamental studies provide a framework for the development of hydrate-phobic surfaces, and may lead to passive enhancement of flow assurance and prevention of blockages in deep-sea oil and gas operations.en_US
dc.description.statementofresponsibilityby Jonathan David Smith.en_US
dc.format.extent27 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMechanical Engineering.en_US
dc.titleHydrate-phobic surfacesen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineering
dc.identifier.oclc776867263en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record