MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Sonoelectrochemical synthesis of submicron metal powders

Author(s)
Reneker, Joseph (Joseph William)
Thumbnail
DownloadFull printable version (3.568Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Mechanical Engineering.
Advisor
Taofang Zeng.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Pulsed sonoelectrochemical synthesis is a widely used technique for producing nanoparticles. In this technique, alternating pulses of electric current and power ultrasound are applied to an electrochemical cell to create and suspend particles in the electrolyte. The pulsed technique largely separates the particle morphology defining physical action of electrochemistry and ultrasound. Despite the large body of work characterizing the pulsed method, surprisingly little is written about the behavior of particles in the continuous case, where electric current and ultrasound are simultaneously present. In this thesis, continuous ultrasound assisted electrochemical synthesis of nanoparticles is established. Potentially useful mechanisms for particle size and shape control in continuous reactors are discussed. A continuous sonoelectrochemical reactor was designed and demonstrated to produce submicron copper powders. Improvements to the batch reactor design are proposed to extend the technique to a flow reactor useful for commercial production of submicron metal powders.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2012.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 46-48).
 
Date issued
2012
URI
http://hdl.handle.net/1721.1/70439
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.