MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Characterization of unsteady loading due to impeller-diffuser interaction in centrifugal compressors

Author(s)
Lusardi, Christopher (Christopher Dean)
Thumbnail
DownloadFull printable version (10.96Mb)
Other Contributors
Massachusetts Institute of Technology. Computation for Design and Optimization Program.
Advisor
Choon S. Tan.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Time dependent simulations are used to characterize the unsteady impeller blade loading due to imipeller-diffuser interaction in centrifugal compressor stages. The capability of simulations are assessed by comparing results against unsteady pressure and velocity measurements in the vaneless space. Simulations are shown to be adequate for identifying the trends of unsteady impeller blade loading with operating and design parameters. However they are not sufficient for predicting the absolute magnitude of loading unsteadiness. Errors of up to 14% exist between absolute values of flow quantities. Evidence suggests that the k - e turbulence model used is inappropriate for centrifugal compressor flow and is the significant source of these errors. The unsteady pressure profile on the blade surface is characterized as the sum of two superimposing pressure components. The first component varies monotonically along the blade chord. The second component can be interpreted as an acoustic wave propagating upstream. Both components fluctuate at the diffuser vane passing frequency, but at a different phase angle. The unsteady loading is the sum of the fluctuation amplitude of each component minus a value that is a function of the phase relationship between the pressure component fluctuations. Simulation results for different compressor designs are compared. Differences observed are primarily attributed to the amplitude of pressure fluctuation on the pressure side of the blade and the wavelength of the pressure disturbance propagating upstream. Lower pressure side pressure fluctuations are associated with a weaker pressure non-uniformity at the diffuser inlet as a result of a lower incidence angle into the diffuser. The wavelength of the pressure disturbance propagating upstream sets the domain on the blade surface in which the phase relationship between pressure component fluctuations is favorable. A longer wavelength increases the domain over which this phase relationship is such that the amplitude of unsteadiness is reduced.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Computation for Design and Optimization Program, 2012.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 89-90).
 
Date issued
2012
URI
http://hdl.handle.net/1721.1/72869
Department
Massachusetts Institute of Technology. Computation for Design and Optimization Program
Publisher
Massachusetts Institute of Technology
Keywords
Computation for Design and Optimization Program.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.