Show simple item record

dc.contributor.advisorDavid Simchi-Levi and Vivek Farias.en_US
dc.contributor.authorSham, Gregory C. (Gregory Chi-Keung)en_US
dc.contributor.otherLeaders for Global Operations Program.en_US
dc.date.accessioned2012-09-27T15:29:08Z
dc.date.available2012-09-27T15:29:08Z
dc.date.copyright2012en_US
dc.date.issued2012en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/73397
dc.descriptionThesis (M.B.A.)--Massachusetts Institute of Technology, Sloan School of Management; and, (S.M.)--Massachusetts Institute of Technology, Engineering Systems Division; in conjunction with the Leaders for Global Operations Program at MIT, 2012.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 52).en_US
dc.description.abstractIn the current healthcare environment, the cost of delivering patient care is an important concern for hospitals. As a result, healthcare organizations are being driven to maximize their existing resources, both in terms of infrastructure and human capital. Using a data-driven approach with analytical techniques from operations management can contribute towards this goal. More specifically, this thesis shows, drawing from a recent project at Beth Israel Deaconess Medical Center (BIDMC), that predictive modeling can be applied to operating room (OR) scheduling in order to effectively increase capacity. By examining the current usage of the existing block schedule system at BIDMC and developing a linear regression model, OR time that is expected to go unused can be instead identified in advance and freed for use. Sample model results show that it is expected to be operationally effective by capturing a large enough portion of OR time for a pooled set of blocks to be useful for advanced scheduling purposes. This analytically determined free time represents an improvement in how the current block system is employed, especially in terms of the nominal block release time. This thesis makes the argument that such a model can integrate into a scheduling system with more efficient and flexible processes, ultimately resulting in more effective usage of existing resources.en_US
dc.description.statementofresponsibilityby Gregory C. Sham.en_US
dc.format.extent52 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectSloan School of Management.en_US
dc.subjectEngineering Systems Division.en_US
dc.subjectLeaders for Global Operations Program.en_US
dc.titleDeveloping a data-driven approach for improving operating room scheduling processesen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.description.degreeM.B.A.en_US
dc.contributor.departmentLeaders for Global Operations Program at MITen_US
dc.contributor.departmentMassachusetts Institute of Technology. Engineering Systems Division
dc.contributor.departmentSloan School of Management
dc.identifier.oclc810134351en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record