MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Business case assessment of unmanned systems level of autonomy

Author(s)
Liu, Edward W
Thumbnail
DownloadFull printable version (8.944Mb)
Other Contributors
Leaders for Global Operations Program.
Advisor
Jonathan How and Roy Welsch.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
The federal government has continually increased its spending on unmanned aerial vehicles (UAVs) during the past decade. Efforts to drive down UAV costs have primarily focused on the physical characteristics of the UAV, such as weight, size, and shape. Due to the saturation of the UAV business in the federal sector, the civilian sector is not as penetrated. Hence, companies see this phenomenon as an opportunity to establish itself as the standard bearer in this sector. This thesis will address how Boeing can establish guidelines for business strategies in UAV offerings to potential clients. The key innovation that will be introduced is a modeling tool that will focus on simulation/trending and sensitivity analysis to help provide some insight into what these guidelines will be. The modeling tool will quantify many of the benefits and costs of the components and features of the production and utilization of UAVs. Other notable recommendations include defining a new data recording process to obtain sets of sample data to validate the results of the modeling tool and streamlining the complexity of additional features and enhancements that will be incorporated in future versions of the modeling tool.
Description
Thesis (M.B.A.)--Massachusetts Institute of Technology, Sloan School of Management; and, (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science; in conjunction with the Leaders for Global Operations Program at MIT, 2012.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 71-73).
 
Date issued
2012
URI
http://hdl.handle.net/1721.1/73405
Department
Leaders for Global Operations Program at MIT; Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science; Sloan School of Management
Publisher
Massachusetts Institute of Technology
Keywords
Sloan School of Management., Electrical Engineering and Computer Science., Leaders for Global Operations Program.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.