dc.contributor.advisor | Roy Welsch and Daniel Whitney. | en_US |
dc.contributor.author | Daigh, Sara L. (Sarah Louise), 1981- | en_US |
dc.contributor.other | Leaders for Global Operations Program. | en_US |
dc.date.accessioned | 2012-09-27T15:30:32Z | |
dc.date.available | 2012-09-27T15:30:32Z | |
dc.date.copyright | 2012 | en_US |
dc.date.issued | 2012 | en_US |
dc.identifier.uri | http://hdl.handle.net/1721.1/73413 | |
dc.description | Thesis (M.B.A.)--Massachusetts Institute of Technology, Sloan School of Management; and, (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering; in conjunction with the Leaders for Global Operations Program at MIT, 2012. | en_US |
dc.description | Cataloged from PDF version of thesis. | en_US |
dc.description | Includes bibliographical references (p. 53). | en_US |
dc.description.abstract | Helicopter final assembly involves the installation of hundreds of components into the aircraft and takes thousands of man-hours. Meeting production targets such as total build days and total aircraft man-hours can be difficult when faced with challenges related to parts, workforce, and scheduling. A tool to identify key installations on which to focus efforts for maximum benefit can help improve performance to targets. The Critical Path Method was developed as a project management tool to aid in scheduling large and complex projects. Its application to manufacturing can provide the insights necessary to improve performance in an environment such as helicopter final assembly. This thesis provides a case study of helicopter final assembly. A critical path analysis is performed on the assembly process, using predecessor, duration, and resource data. The results of the analysis are used to draw conclusions about the system as a whole and to make recommendations to improve system performance. | en_US |
dc.description.statementofresponsibility | by Sarah L. Daigh. | en_US |
dc.format.extent | 53 p. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Massachusetts Institute of Technology | en_US |
dc.rights | M.I.T. theses are protected by
copyright. They may be viewed from this source for any purpose, but
reproduction or distribution in any format is prohibited without written
permission. See provided URL for inquiries about permission. | en_US |
dc.rights.uri | http://dspace.mit.edu/handle/1721.1/7582 | en_US |
dc.subject | Sloan School of Management. | en_US |
dc.subject | Mechanical Engineering. | en_US |
dc.subject | Leaders for Global Operations Program. | en_US |
dc.title | Helicopter final assembly critical path analysis | en_US |
dc.type | Thesis | en_US |
dc.description.degree | S.M. | en_US |
dc.description.degree | M.B.A. | en_US |
dc.contributor.department | Leaders for Global Operations Program at MIT | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Mechanical Engineering | |
dc.contributor.department | Sloan School of Management | |
dc.identifier.oclc | 810336559 | en_US |