Advanced Search
DSpace@MIT

Protein engineering for cancer therapy

Research and Teaching Output of the MIT Community

Show simple item record

dc.contributor.advisor K. Dane Wittrup. en_US
dc.contributor.author Liu, David Victor en_US
dc.contributor.other Massachusetts Institute of Technology. Dept. of Chemical Engineering. en_US
dc.date.accessioned 2012-10-10T15:46:07Z
dc.date.available 2012-10-10T15:46:07Z
dc.date.copyright 2011 en_US
dc.date.issued 2012 en_US
dc.identifier.uri http://hdl.handle.net/1721.1/73796
dc.description Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Chemical Engineering, February 2012. en_US
dc.description Cataloged from PDF version of thesis. en_US
dc.description Includes bibliographical references. en_US
dc.description.abstract The immunosuppressive effects of CD4⁺CD25⁺ regulatory T cells (Tregs) interfere with anti-tumor immune responses in cancer patients. In the first part of this work, we present a novel class of engineered Interleukin-2 (IL-2) analogues that antagonize the IL-2 receptor, for inhibiting Treg suppression. These antagonists are engineered for high affinity to the IL-2 receptor a subunit and low affinity to either the [beta] or [gamma] subunit, resulting in a signaling-deficient IL-2 analogue that sequesters the IL-2 receptor a subunit from wild type IL-2. Using this design, human and mouse IL-2 antagonists were generated with inhibition constants ranging from 200 pM to 5 nM in vitro. Genetic fusions with IgG2a Fc enhanced serum half-life up to 30 hours. In order to study the effects of IL-2 antagonism, Fc fragments with disrupted effector functions were used. Fc-antagonist fusions bound to but could not deplete peripheral Tregs. They downregulated CD25 on Tregs, but could not perturb Treg function in a syngenic tumor model, presumably due to the high sensitivity of the IL-2 receptor and a high threshold for antagonism in vivo. In the second part of this work, we present a novel multi-agent protein-based system for targeted siRNA delivery that provides potential advantages over other nanoparticle- and proteinbased delivery vehicles. In the first agent, the double stranded RNA binding domain (dsRBD) of human protein kinase R is used as an siRNA carrier, in fusion proteins that target epidermal growth factor receptor (EGFR). Targeted dsRBD proteins deliver large amounts of siRNA to endosomal compartments in an EGFR expressing cell line, but efficient gene silencing is limited by endosomal escape. The use of a second agent that contains the cholesterol dependent cytolysin, perfringolysin 0, enhances endosomal escape of siRNA. Targeted delivery of perfringolysin 0 induces gene silencing in a dose-dependent and EGFR-dependent manner. However, cytotoxicity of the cytolysin creates a narrow therapeutic window. Multiepitopic EGFR binders that induce EGFR clustering are explored as tools for enhancing gene silencing efficiency. Interestingly, they not only enhance gene silencing potency but also protect against toxicity from EGFR-targeted cytolysins, thus significantly widening the therapeutic window of this method. en_US
dc.description.statementofresponsibility by David Victor Liu. en_US
dc.format.extent 144 p. en_US
dc.language.iso eng en_US
dc.publisher Massachusetts Institute of Technology en_US
dc.rights M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. en_US
dc.rights.uri http://dspace.mit.edu/handle/1721.1/7582 en_US
dc.subject Chemical Engineering. en_US
dc.title Protein engineering for cancer therapy en_US
dc.type Thesis en_US
dc.description.degree Ph.D. en_US
dc.contributor.department Massachusetts Institute of Technology. Dept. of Chemical Engineering. en_US
dc.identifier.oclc 811027635 en_US


Files in this item

Name Size Format Description
811027635.pdf 17.29Mb PDF Preview, non-printable (open to all)
811027635-MIT.pdf 17.29Mb PDF Full printable version (MIT only)

This item appears in the following Collection(s)

Show simple item record

MIT-Mirage