Advanced Search
DSpace@MIT

The natural and industrial cycling of indium in the environment

Research and Teaching Output of the MIT Community

Show simple item record

dc.contributor.advisor Harold F. Hemond. en_US
dc.contributor.author White, Sarah Jane O'Connell en_US
dc.contributor.other Massachusetts Institute of Technology. Dept. of Civil and Environmental Engineering. en_US
dc.date.accessioned 2012-10-26T19:01:40Z
dc.date.available 2012-10-26T19:01:40Z
dc.date.copyright 2012 en_US
dc.date.issued 2012 en_US
dc.identifier.uri http://hdl.handle.net/1721.1/74493
dc.description Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering, 2012. en_US
dc.description Cataloged from PDF version of thesis. en_US
dc.description Includes bibliographical references (p. 167-191). en_US
dc.description.abstract Indium is an important metal whose production is increasing dramatically due to new uses in the rapidly growing electronics, photovoltaic, and LED industries. Little is known, however, about the natural or industrial cycling of indium or its environmental behavior. Industrial emissions of indium are already larger than natural emissions. A review of the literature suggests that metal smelting and coal burning are the primary industrial sources of indium to the environment, while releases from the semiconductor and electronics industries are small at present. This scenario may change with the rapid growth of indium use in the electronics and semiconductor industries. Studies were conducted on indium cycling in the atmosphere, indium deposition to a peat bog over the past century, and indium behavior in a creek influenced by acid mine drainage. Atmospheric indium concentrations in the northeastern United State vary from <0.7 to 8 pg/m³. with significant differences geographically and temporally. Atmospheric back trajectories, correlation of indium to other metals in these samples, and receptor modeling suggest that the highest indium concentrations come from nonferrous smelters in the north, while lower concentrations are seen in air traveling from the midwestern US. Fluxes of indium to Thoreau's Bog in Concord, MA, began increasing in the early 1900s, well before indium was used significantly in industry, and are likely the result of emissions from nonferrous smelting and coal combustion. Fluxes peaked in the 1970s, and have been decreasing until the present, likely reflecting the advent of particulate emissions controls in the US and Canada. Acid-mine drainage contributes indium concentrations 104 times higher than natural freshwaters to Mineral Creek, Colorado, and all of this indium exists in the dissolved phase. During an experimental raising of the pH of this system, essentially all of the indium associates with the particulate phases, primarily due to sorption to iron-oxides. Knowledge of the anthropogenic and natural cycling of indium can lead to a greater understanding of the environmental impacts and human health effects of this metal. With further study, this understanding may lead to pollution prevention, and allow informed decision making about indium's use, handling, and disposal. en_US
dc.description.statementofresponsibility by Sarah Jane O'Connell White. en_US
dc.format.extent 191 p. en_US
dc.language.iso eng en_US
dc.publisher Massachusetts Institute of Technology en_US
dc.rights M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. en_US
dc.rights.uri http://dspace.mit.edu/handle/1721.1/7582 en_US
dc.subject Civil and Environmental Engineering. en_US
dc.title The natural and industrial cycling of indium in the environment en_US
dc.type Thesis en_US
dc.description.degree Ph.D. en_US
dc.contributor.department Massachusetts Institute of Technology. Dept. of Civil and Environmental Engineering. en_US
dc.identifier.oclc 813094554 en_US


Files in this item

Name Size Format Description
813094554.pdf 17.59Mb PDF Preview, non-printable (open to all)
813094554-MIT.pdf 17.59Mb PDF Full printable version (MIT only)

This item appears in the following Collection(s)

Show simple item record

MIT-Mirage