Show simple item record

dc.contributor.advisorJerome J. Connor.en_US
dc.contributor.authorSeymour, Douglas (Douglas Benjamin)en_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Civil and Environmental Engineering.en_US
dc.date.accessioned2012-10-26T19:01:59Z
dc.date.available2012-10-26T19:01:59Z
dc.date.copyright2012en_US
dc.date.issued2012en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/74497
dc.descriptionThesis (S.M.)--Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering, 2012.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 97-99).en_US
dc.description.abstractRocking wall systems consist of shear walls, laterally connected to a building, that are moment-released in their strong plane. Their purpose is to mitigate seismic structural response by constraining a building primarily to a linear fundamental mode. This constraint prevents mid-story failure, and maximizes energy dissipation by activating the maximum number of plastic hinges throughout the structure. This is a useful response mitigation system, but suffers from some difficulties, stemming primarily from the considerable mass of the wall. Those difficulties are notably expensive foundations, and very high inertial forces imparted to the building, with subsequent need for expensive lateral connectors. The purposes of this work are to analyze current implementations of rocking wall systems, present an early reference on their application, present the first systematic methodology for their design, clarify their analysis, and introduce an alternative structural system that avoids their difficulties. A quasi-static analysis model is used for predicting the seismic mitigation performance of rocking walls and rocking columns. The stiffness matrix is generalized for an N-story building equipped with these structural systems. The model presented enables optimization of the design parameters, and consequently improved system effectiveness, analytical tractability, and material usage. The case study is a rocking wall system installed in a building located in Tokyo, Japan. A software package is developed, providing an illustrative implementation of the methods derived.en_US
dc.description.statementofresponsibilityby Douglas Seymour.en_US
dc.format.extent172 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectCivil and Environmental Engineering.en_US
dc.titleDesign of innovative dynamic systems for seismic response mitigationen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Civil and Environmental Engineering
dc.identifier.oclc813844640en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record