MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

CarSpeak : a content-centric network for autonomous driving

Author(s)
Suresh Kumar, Swarun
Thumbnail
DownloadFull printable version (6.486Mb)
Alternative title
Content-centric network for autonomous driving
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Dina Katabi.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
We introduce CarSpeak, a communication system for autonomous driving. CarSpeak enables a car to query and access sensory information captured by other cars in a manner similar to how it accesses information from its local sensors. CarSpeak adopts a content-centric approach where information objects - i.e., regions along the road - are first class citizens. It names and accesses road regions using a multi-resolution system, which allows it to scale the amount of transmitted data with the available bandwidth. CarSpeak also changes the MAC protocol so that, instead of having nodes contend for the medium, contention is between road regions, and the medium share assigned to any region depends on the number of cars interested in that region. CarSpeak is implemented in a state-of-the-art autonomous driving system and tested on indoor and outdoor hardware testbeds including an autonomous golf car and 10 iRobot Create robots. In comparison with a baseline that directly uses 802.11, CarSpeak reduces the time for navigating around obstacles by 2.4x, and reduces the probability of a collision due to limited visibility by 14 x.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2012.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 75-79).
 
Date issued
2012
URI
http://hdl.handle.net/1721.1/75718
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.