Show simple item record

dc.contributor.advisorRichard Lanza.en_US
dc.contributor.authorErickson, Anna Sen_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Nuclear Science and Engineering.en_US
dc.date.accessioned2013-01-23T19:44:36Z
dc.date.available2013-01-23T19:44:36Z
dc.date.copyright2011en_US
dc.date.issued2011en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/76496
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Nuclear Science and Engineering, 2011.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 161-167).en_US
dc.description.abstractThe need for large-size detectors for long-range active interrogation (Al) detection has generated interest in water-based detector technologies. AI is done using external radiation sources to induce fission and to detect, identify, and characterize special nuclear material (SNM) through the gamma rays and neutrons emitted. Long-range applications require detectors with a large solid angle and an ability to significantly suppress lowenergy background from linear electron accelerators. Water Cherenkov Detectors (WCD) were selected because of their transportability, scalability, and an inherent energy threshold. The main objective of this thesis was to design a large-size WCD capable of detecting gamma rays and to demonstrate particle energy discrimination ability. WCD was modeled in detail using Geant4 for optimization purposes. The experimental detector is composed of an aluminum body with a high efficiency (98.5%) diffuse reflector. Cherenkov photons are detected with six 8" hemispherical Hamamatsu photomultiplier tubes (PMT). PMTs are calibrated using two monoenergetic LEDs. The detector was shown to successfully detect gamma rays of energies above the Cherenkov threshold. The detector was able to discriminate between various sources, such as ⁶⁰Co and ²³²Th, even though WCD are known for their poor energy resolution. The detector design and analysis was completed, and it was demonstrated both computationally and experimentally that it is possible to use WCD to detect and characterize gamma rays. One of the accomplishments of this thesis was demonstration of event reconstruction capability of the detector system. A full-detector model was created using Geant4 simulation toolkit. The performance of the detector was predicted using the model and then experimentally verified. The qualitative agreement between the model and the experiment was observed. The event reconstruction was an important part of the detector performance analysis. Post-experimental data processing was done using ROOT.en_US
dc.description.statementofresponsibilityby Anna S. Erickson.en_US
dc.format.extent190 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectNuclear Science and Engineering.en_US
dc.titleRemote detection of fissile material : Cherenkov counters for gamma detectionen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Nuclear Science and Engineering
dc.identifier.oclc823504611en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record