Show simple item record

dc.contributor.advisorRamesh Raskar.en_US
dc.contributor.authorNaik, Nikhil (Nikhil Deepak)en_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Architecture. Program in Media Arts and Sciences.en_US
dc.date.accessioned2013-01-23T19:49:27Z
dc.date.available2013-01-23T19:49:27Z
dc.date.copyright2012en_US
dc.date.issued2012en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/76529
dc.descriptionThesis (S.M.)--Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2012.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 92-96).en_US
dc.description.abstractThis thesis introduces a novel framework for analysis of multibounce light transport using time-of-flight imaging for the applications of ultrafast reflectance acquisition and imaging through scattering media. Using ultrafast imaging and ultrafast illumination, we analyze light indirectly scattered off materials to provide new insights into the important problem of material acquisition. We use an elegant matrix based representation of light transport, which enables scene reconstruction using standard optimization techniques. We demonstrate the accuracy and efficiency of our methods using various simulations as well as an experimental setup. In particular, we develop the concept of 'in the wild' reflectance estimation using ultrafast imaging. We demonstrate a new technique that allows a camera to rapidly acquire reflectance properties of objects from a single viewpoint, over relatively long distances and without encircling equipment. We measure material properties by indirectly illuminating an object by a laser source, and observing its reflected light indirectly using a time-of-fight camera. As compared to lengthy or highly calibrated reflectance acquisition techniques, we demonstrate a device that can rapidly and simultaneously capture meaningful reflectance information of multiple materials. Furthermore, we use this framework to develop a method for imaging through scattering media using ultrafast imaging. We capture the diffuse scattering in the scene with a time-of- flight camera and analyze the multibounce light transport to recover albedo and depth information of planar objects hidden behind a diffuser. The methods developed in this thesis using ultrafast imaging can spur research with novel real-time applications in computer graphics, medical imaging and industrial photography.en_US
dc.description.statementofresponsibilityby Nikhil Naik.en_US
dc.format.extent96 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectArchitecture. Program in Media Arts and Sciences.en_US
dc.titleMultibounce light transport analysis using ultrafast imaging for material acquisitionen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentProgram in Media Arts and Sciences (Massachusetts Institute of Technology)
dc.identifier.oclc823938234en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record