MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Retroactivity, modularity, and insulation in synthetic biology circuits

Author(s)
Lin, Allen
Thumbnail
DownloadFull printable version (18.84Mb)
Alternative title
Modularity, Retroactivity, and insulation in synthetic biology circuits
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Ron Weiss and Domitilla Del Vecchio.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
A central concept in synthetic biology is the reuse of well-characterized modules. Modularity simplifies circuit design by allowing for the decomposition of systems into separate modules for individual construction. Complex regulatory networks can be assembled from a library of devices. However, current devices in synthetic biology may not actually be modular and may instead change behavior upon interconnections, a phenomenon called retroactivity. Addition of a new component to a system can change individual device dynamics within the system, potentially making timeconsuming iterative redesign necessary. Another need for systems construction is the ability to rapidly assemble constructs from part libraries in a combinatorial, highthroughput fashion. In this thesis, a multi-site assembly method that permits the rapid reshuffling of promoters and genes for yeast expression is established. Synthetic circuits in yeast to measure retroactivity and to act as an insulator that attenuates such effect are designed and modeled.
Description
Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2011.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 141-151).
 
Date issued
2011
URI
http://hdl.handle.net/1721.1/76989
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.