Digital signal processing hardware for a fast fourier transform radio telescope
Author(s)
Losh, Jonathan L
DownloadFull printable version (4.930Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Max Tegmark.
Terms of use
Metadata
Show full item recordAbstract
21-cm tomography is a devoloping technique for measuring the Epoch of Reionization in the universe's history. The nature of the signal measured in 21-cm tomography is such that a new kind of radio telescope is needed: one that scales well into very large numbers of antennas. The Omniscope, a Fast Fourier Transform telescope, is exactly such a telescope. I detail the implementation of the digital signal processing backend of a 32-channel interferometer designed to help characterize the non-digital parts of the system, starting at the point analog signal enters the FPGA and ending when it is written to a file on a computer. I also describe the accompanying subsystems, my implementation of a scaled-up, 64 channel design, and lay out a framework for expanding to 256 channels.
Description
Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2012. Cataloged from PDF version of thesis. Includes bibliographical references.
Date issued
2012Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer SciencePublisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.