MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Thermoplastic bonding of microfluidic substrates

Author(s)
Judge, Benjamin Michael
Thumbnail
DownloadFull printable version (16.92Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Mechanical Engineering.
Advisor
Brian W. Anthony.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
The assembly of microfluidic components for lab on a chip (LOC) applications that are manufactured from commodity thermoplastics is challenging. A survey of plastic welding techniques validates that contour transmission laser welding is the most viable and commercially demonstrated option for flexibility and sensitive microfluidic tolerances. However, understanding laser energy transmission and absorption phenomenon further complicates analyzing microfluidic thermoplastic welding, since the instantaneous material properties vary with both temperature and pressure. Thermoplastic welding has steep thermal gradients due to high thermal resistances, resulting in asymmetric heat affected zones (HAZ). Welding fixture sensitivities may be engineered to tune the weld energy required and a desired HAZ bias to reduce microfluidic channel deformation. Energy imparted by resistively heating thin implants can be easily measured and observed. Resistive heating of implants was demonstrated as a low energy, parallel, and feasible microfluidic welding assembly process. Lessons from implant heating can be applied to more complicated but analogous processes.
Description
Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2012.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 103-108).
 
Date issued
2012
URI
http://hdl.handle.net/1721.1/78165
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.