MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Optimization techniques for human computation-enabled data processing systems

Author(s)
Marcus, Adam, Ph. D. Massachusetts Institute of Technology
Thumbnail
DownloadFull printable version (15.47Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Samuel R. Madden and David R. Karger.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Crowdsourced labor markets make it possible to recruit large numbers of people to complete small tasks that are difficult to automate on computers. These marketplaces are increasingly widely used, with projections of over $1 billion being transferred between crowd employers and crowd workers by the end of 2012. While crowdsourcing enables forms of computation that artificial intelligence has not yet achieved, it also presents crowd workflow designers with a series of challenges including describing tasks, pricing tasks, identifying and rewarding worker quality, dealing with incorrect responses, and integrating human computation into traditional programming frameworks. In this dissertation, we explore the systems-building, operator design, and optimization challenges involved in building a crowd-powered workflow management system. We describe a system called Qurk that utilizes techniques from databases such as declarative workflow definition, high-latency workflow execution, and query optimization to aid crowd-powered workflow developers. We study how crowdsourcing can enhance the capabilities of traditional databases by evaluating how to implement basic database operators such as sorts and joins on datasets that could not have been processed using traditional computation frameworks. Finally, we explore the symbiotic relationship between the crowd and query optimization, enlisting crowd workers to perform selectivity estimation, a key component in optimizing complex crowd-powered workflows.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2012.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 119-124).
 
Date issued
2012
URI
http://hdl.handle.net/1721.1/78454
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.