Show simple item record

dc.contributor.advisorRetsef Levi and David Simchi-Levi.en_US
dc.contributor.authorRange, Ashleigh Royaltyen_US
dc.contributor.otherLeaders for Global Operations Program.en_US
dc.date.accessioned2013-09-24T19:37:17Z
dc.date.available2013-09-24T19:37:17Z
dc.date.copyright2013en_US
dc.date.issued2013en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/81017
dc.descriptionThesis (M.B.A.)--Massachusetts Institute of Technology, Sloan School of Management; and, (S.M.)--Massachusetts Institute of Technology, Engineering Systems Division; in conjunction with the Leaders for Global Operations Program at MIT, 2013.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 79).en_US
dc.description.abstractMassachusetts General Hospital (MGH) is currently the nation's top ranked hospital and is the largest in New England. With over 900 hospital beds and approximately 38,000 operations performed each year, MGH's operating rooms (ORs) run at 90% utilization and their hospital beds at 99% operational occupancy. MGH is faced with capacity constraints throughout the perioperative (pre-, intra-, and postoperative) process and desires to improve throughput and decrease patient waiting time without adding expensive additional resources. This project focuses on matching the intraday scheduling of elective surgeries with the discharge rate and pattern of patients from the hospital floor by investigating ways surgeons could potentially schedule their cases within a given OR block. To do this, various scheduling rules are modeled to measure the impact of shifting patient flow in each step of the perioperative process. Currently the hospital floor proves to be the biggest bottleneck in the system. Delays in discharging patients result in Same Day Admits (patients that will be admitted to the hospital post-surgery) waiting for hospital beds in the Post Anesthesia Care Unit (PACU). These patients wait more than sixty minutes on average after being medically cleared to depart the PACU. A simulation model is built to evaluate the downstream effects of each scheduling rule and discharge process change. The model takes into account physical and staff resource limitations at each of the upstream and downstream steps in the perioperative process. By scheduling Same Day Admits last in each OR block, patient wait time in the PACU can be reduced up to 49%. By implementing the recommended changes the system will realize lower wait times for patients, less stress on the admitting and nursing staff, and a better overall use of the limited physical resources at MGH.en_US
dc.description.statementofresponsibilityby Ashleigh Royalty Range.en_US
dc.format.extent79 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectSloan School of Management.en_US
dc.subjectEngineering Systems Division.en_US
dc.subjectLeaders for Global Operations Program.en_US
dc.titleImproving surgical patient flow through simulation of scheduling heuristicsen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.description.degreeM.B.A.en_US
dc.contributor.departmentLeaders for Global Operations Program at MITen_US
dc.contributor.departmentMassachusetts Institute of Technology. Engineering Systems Division
dc.contributor.departmentSloan School of Management
dc.identifier.oclc857790332en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record