Show simple item record

dc.contributor.advisorDava Newman and Niels Holten-Andersen.en_US
dc.contributor.authorWee, Brian (Brian J.)en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Materials Science and Engineering.en_US
dc.date.accessioned2013-09-24T19:45:41Z
dc.date.available2013-09-24T19:45:41Z
dc.date.copyright2013en_US
dc.date.issued2013en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/81144
dc.descriptionThesis (S.B.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 2013.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 39-41).en_US
dc.description.abstractThis thesis seeks to assess the viability of a space qualified shape memory polymer (SMP) mechanical counter pressure (MCP) suit. A key development objective identified by the International Space Exploration Coordination Group, the development of a superior space suit with greater mobility and environmental robustness is necessary to support long-range human space exploration, specifically a mission to Mars. Conceptualized in 1971, a spacesuit utilizing MCP would fulfill these goals but its development was halted due to inadequate mechanical analysis and material limitations at the time. Since then, new active materials have been assessed to potentially further the development of a space qualified MCP space suit, which include quantitative thresholds for minimum pressure production, durability, pressure distribution, mobility range, and ease of garment donning and doffing. Guided by these criteria, a SMP biaxial tubular braid applying MCP through active compression was designed and the prototype manufacturing processes were outlined. To predict the pressure production of this garment, the thermo-mechanics of a SMP was combined with the textile mechanics of a biaxial tubular braid and simulated within design parameter ranges consistent with the design criteria and practical considerations. The pressure production was controllable with the design parameters SMP elastic modulus, garment radial deformation, textile fiber spacing, and operational temperature. Assuming reasonable model accuracy, a SMP garment could achieve the necessary pressure production for a space qualified MCP suit, however, the durability of such a garment would be questionable considering the creep sustained from consecutive spacewalks of four to eight hours. Recommendations are made for methods to increase model accuracy, suggested SMP actuation mechanisms, and alternative textile architectures.en_US
dc.description.statementofresponsibilityby Brian Wee.en_US
dc.format.extent42 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMaterials Science and Engineering.en_US
dc.titleAssessment and preliminary model development of shape memory polymers mechanical counter pressure space suitsen_US
dc.typeThesisen_US
dc.description.degreeS.B.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineering
dc.identifier.oclc858283102en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record