Fabrication and optimization of light emitting devices with core-shell quantum dots
Author(s)
Song, Katherine Wei![Thumbnail](/bitstream/handle/1721.1/82185/862075607-MIT.pdf.jpg?sequence=5&isAllowed=y)
DownloadFull printable version (56.52Mb)
Alternative title
Fabrication and optimization of LEDs with core-shell quantum dots
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Vladimir Bulović.
Terms of use
Metadata
Show full item recordAbstract
Quantum dot light emitting devices (QD-LEDs) are promising options for the next generation of solid state lighting, color displays, and other optoelectronic applications. Overcoating quantum dots (QDs) -- semiconducting nanocrystals of CdSe, PbS, or another similar compound -- with a wide band-gap "shell" has recently been shown to significantly boost QD-LED performance and yield the most efficient accent QD-LEDs to date. This thesis studies fabrication techniques to make bright, efficient QD-LEDs with these "core-shell" QDs. The first part studies the electrophoretic deposition (EPD) of CdSe/ZnS QDs. QD-LEDs conventionally utilize a QD lm that is deposited via spin-casting, a reliable but highly unscalable technique for the deposition of thin, smooth films of QDs for QD-LED applications. Potential advantages of EPD include the ability for deposition onto a variety of substrate shapes and more energetically favorable QD packing. Devices made with EPD QD films exhibit peak efficiencies comparable to those of devices with a spun-cast QD layer and turn-on voltages surprisingly lower than the optical band-gap of the QDs. These results suggest that EPD is a viable alternative to spin-casting for the processing of QD-LEDs. The second part of this thesis explores the role of core-shell QDs in creating bright, efficient LEDs in the near-infrared ([lambda] >1 [mu]m) regime. Infrared QD-LEDs with record brightness and efficiencies are obtained by using QDs in which lead sulfide (PbS) cores are overcoated with a cadmium sulfide (CdS) shell. In situ photoluminescence quantum yield measurements confirm that the QD shell plays a significant role in shielding the emissive QD core from external quenching mechanisms. Finally, fabrication and material considerations for the non-QD layers in the modern QD-LED structure are also discussed. This thesis analyzes different film formation techniques for zinc oxide (ZnO), the electron transport layer in the QD-LEDs, and different materials and thicknesses for the organic hole transport layer.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2013. This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections. Cataloged from student-submitted PDF version of thesis. Includes bibliographical references (p. 79-84).
Date issued
2013Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer SciencePublisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.