Show simple item record

dc.contributor.advisorErich P. Ippen.en_US
dc.contributor.authorMorse, Jonathan Leeen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2013-11-18T19:13:53Z
dc.date.available2013-11-18T19:13:53Z
dc.date.copyright2013en_US
dc.date.issued2013en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/82363
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2013.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references.en_US
dc.description.abstractFemtosecond fiber lasers have become an important enabling technology for advances in many areas including: frequency combs, precise timing distribution, optical arbitrary waveform generation, and high bit rate sampling for analog to digital conversion. Experiments and applications like these put demanding requirements on the source laser oscillator; such as operating near 1550 nm in wavelength, multi-gigahertz repetition rates, sub 100 femtosecond pulse widths, and sub 10 femtosecond timing jitters. This thesis describes the design, fabrication, and characterization of three different iterations of mode-locked laser sources utilizing erbium doped fibers and semiconductor saturable absorbing mirrors to form pulse trains in the 1550 nm wavelength band. The first systems took advantage of a highly doped erbium fiber in a sigma cavity configuration to generate 100 fs pulses at up to a 300 MHz repetition rate through polarization additive pulse mode-locking. At the time, this was the highest fundamental repetition rate to be reported for a fiber cavity in a ring configuration. The next two systems are variations on a linear cavity fiber laser design. In the first, the fiber coupling was achieved through free space optics and the saturable absorbing mirror was also imaged through lenses. Once mode-locked, repetition rates of just beyond 1 GHz were demonstrated with this design; however the laser output was relatively low power. The second version coupled the input and output light through fiber components and coupled the fiber directly to the saturable absorbing mirror. This laser mode-locked in several different states and a study to characterize and understand these states was undertaken. Ultimately, it was understood which conditions minimized the cavity noise and pulse widths thus allowing for the achievement of a 1550 nm, 1 GHz, sub 10 fs jitter, femtosecond fiber laser. This laser is more compact than competing technologies and could be constructed with relatively low cost.en_US
dc.description.statementofresponsibilityby Jonathan Lee Morse.en_US
dc.format.extent204 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleFemtosecond fiber lasers at 1550 nm for high repetition rates and low timing jitteren_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc862067442en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record