Show simple item record

dc.contributor.advisorVladimir Bulović.en_US
dc.contributor.authorShirasaki, Yasuhiroen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2013-11-18T19:14:09Z
dc.date.available2013-11-18T19:14:09Z
dc.date.copyright2013en_US
dc.date.issued2013en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/82365
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2013.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 135-147).en_US
dc.description.abstractSaturated and tunable emission colors make colloidal quantum-dot light-emitting diodes (QD-LEDs) interesting for the next generation of display and lighting technologies. However, there still remain various hurdles to the commercialization of QD-LEDs, including their relatively low external quantum efficiencies (EQE). In this thesis, we study the efficiency loss mechanisms present in the latest generation of QD-LEDs. We start with understanding the origin of reduced efficiencies at high current density operation, known as the efficiency roll-off. Through simultaneous measurement of quantum dot (QD) electroluminescence (EL) and photoluminescence (PL) efficiencies during device operation, we identify that the reduced PL efficiency of the QDs at high current densities is the cause for the efficiency roll-off. Furthermore, comparison of QD EL spectra, taken under forward bias, and PL spectra, taken under reverse bias, suggests that this reduced PL efficiency is electric-field-induced. We use the relationship between PL peak-shifts and PL quenching of QDs subject to the quantum confined Stark effect to predict the efficiency roll-off in forward bias. The roll-off predicted by this analysis is in excellent agreement with our experimental data and correctly traces an EQE reduction of nearly 50%. We complement the ELPL study with electroabsorption spectroscopy measurements of a biased QD-LED, which confirms that the charging of the QDs is not voltage bias dependent and is thus unrelated to the roll-off. Finally, we study the effect of Auger recombination on QD-LEDs by varying the QD layer thickness. QD-LEDs with thicker QD layers exhibit lower peak EQEs and QD transient PL with stronger bi-exponential behavior. We attribute the strength of the bi-exponential behavior to the fraction of the QDs charged in the device, which can explain the correlation between the strength of the bi-exponential behavior and the EQE.en_US
dc.description.statementofresponsibilityby Yasuhiro Shirasaki.en_US
dc.format.extent147 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleEfficiency loss mechanisms in colloidal quantum-dot light-emitting diodesen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc862068877en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record