Show simple item record

dc.contributor.advisorRajeev J. Ram.en_US
dc.contributor.authorGoh, Shireenen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Materials Science and Engineering.en_US
dc.date.accessioned2013-11-18T19:14:31Z
dc.date.available2013-11-18T19:14:31Z
dc.date.copyright2013en_US
dc.date.issued2013en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/82368
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 2013.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 195-203).en_US
dc.description.abstractThe research objective is to design a micro-bioreactor for the culture of Chinese Hamster Ovary (CHO) cells. There is an increasing demand for upstream development in high-throughput micro-bioreactors specifically for the recombinant CHO cell line, an important cell line for producing recombinant protein therapeutics. In order to translate a micro-bioreactor originally designed by our group for bacteria to CHO cells, there would need to be significant modifications in the design of the micro-bioreactor due to the extreme sensitivity of CHO cells to physical and chemical stresses. Shear stresses inside the growth chamber will have to be reduced by three orders of magnitude. Moreover, the long doubling time of CHO cells requires a 2 weeks long culture. In a high surface to volume ratio micro-bioreactor, evaporation becomes a major problem. Contamination control is also vital for CHO cultures. In addition, the offline sampling volume required for validation necessitates a doubling of the working volume to 2mL. The newly designed Resistive Evaporation Compensated Actuated (RECA) micro-bioreactor is fully characterized in this thesis to ensure that the design meets the physical specifications of the required CHO cell culture conditions. The RECA micro-bioreactor will be tested with industrial recombinant CHO cell lines. This work is done in collaboration with Genzyme, USA and Sanofi-Aventis, Frankfurt. In this thesis, we also propose the use of dielectric spectroscopy electrodes for online cell viability sensing of CHO cells in micro-bioreactors. The electrodes are fabricated on polycarbonate, a biocompatible and optically clear thermoplastic that will be one of the future base material for microfluidic devices which can be rapidly prototyped. To demonstrate the viability of dielectric spectroscopy as an online viability sensor for CHO cells in a micro-bioreactor, the electrodes are used to characterize samples taken daily from a CHO shake flask batch culture without any sample modifications. Two different electrode geometries and correction methods will be compared to find the optimal system for viability measurements in a micro-bioreactor.en_US
dc.description.statementofresponsibilityby Shireen Goh.en_US
dc.format.extent203 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMaterials Science and Engineering.en_US
dc.titleMicro-bioreactor design for Chinese hamster ovary cellsen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineering
dc.identifier.oclc862072383en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record