Show simple item record

dc.contributor.advisorRon Ballinger.en_US
dc.contributor.authorBlack, Bradley P. (Bradley Patrick)en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Nuclear Science and Engineering.en_US
dc.date.accessioned2013-11-18T19:25:03Z
dc.date.available2013-11-18T19:25:03Z
dc.date.issued2013en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/82453
dc.descriptionThesis (S.M.)--Massachusetts Institute of Technology, Dept. of Nuclear Science and Engineering, 2013.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 123-133).en_US
dc.description.abstractUsed nuclear fuel dry storage canisters will likely be tasked with holding used nuclear fuel for a period longer than originally intended. Originally designed for 20 years, the storage time will likely approach 100 years. These canisters are fabricated from rolled and welded austenitic stainless steel plate. Most of the storage facilities are located on coastal or brackish water sites with environments containing moisture and chloride ions that can cause stress corrosion cracking (SCC). Residual stresses from the welding process provide the tensile stress for crack initiation and propagation which could eventually compromise canister integrity, allowing the release of radioactive material to the environment. If it is assumed that a tensile stress, predominantly from welding, is constant through the material thickness, this would suggest that failure will be initiation controlled. However, prior studies and practical experience indicate that residual stress varies as a function of depth into a welded material, and that stresses can decrease to zero or even go into compression. This would indicate that at some point, crack propagation could be slowed or even be stopped. In order to predict the time to failure of canister material by stress corrosion cracking, it is therefore necessary to know the actual residual stress distribution through the thickness of canister welds. This thesis investigates dry storage canister designs, canister welds, and contributing factors to residual stress, as well as prior studies of residual stress in welded stainless steel piping and chloride stress corrosion crack propagation rates. From this investigation, an estimate is made for the likely residual stress distribution in a typical canister weld, and the effect of residual stress on canister life prediction is examined. The analysis suggests that residual stress distribution has a tremendous impact on a canister's projected time to failure, and that residual tensile stresses in the heat-affected zone of canister welds could become low enough to result in crack arrest.en_US
dc.description.statementofresponsibilityby Bradley P. Black.en_US
dc.format.extent160 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectNuclear Science and Engineering.en_US
dc.titleEffect of residual stress on the life prediction of dry storage canisters for used nuclear fuelen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Nuclear Science and Engineering
dc.identifier.oclc863060120en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record