Show simple item record

dc.contributor.advisorDimitris Bertsimas.en_US
dc.contributor.authorO'Hair, Allison Kellyen_US
dc.contributor.otherMassachusetts Institute of Technology. Operations Research Center.en_US
dc.date.accessioned2013-12-06T19:52:27Z
dc.date.available2013-12-06T19:52:27Z
dc.date.copyright2013en_US
dc.date.issued2013en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/82725
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Sloan School of Management, Operations Research Center, 2013.en_US
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionCataloged from student-submitted PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 105-111).en_US
dc.description.abstractIn this thesis, we present a system to make personalized lifestyle and health decisions for diabetes management, as well as for general health and diet management. In particular, we address the following components of the system: (a) eciently learning preferences through a dynamic questionnaire that accounts for human behavior; (b) modeling blood glucose behavior and updating these models to match individual measurements; and (c) using the learned preferences and blood glucose models to generate an overall diet and exercise plan using mixed-integer robust optimization. In the first part, we propose a method to address (a) above, using integer and robust optimization. Despite the importance of personalization for successful lifestyle modification, current systems for diabetes and dieting do not attempt to use individual preferences to make suggestions. We present a general approach to learning preferences, that includes an efficient and dynamic questionnaire that accounts for response errors, and robust optimization models using risk measures to account for the commonly seen human behavior of loss aversion. We then address part (b) of our system, by first modeling blood glucose behavior as a function of food consumed and exercise performed. We rely on known attributes of dierent foods as well as individual data to build these models. We also show how we use optimization to dynamically update the parameters of the model using new data as it becomes available. In the third part of this thesis, we address (c) by using mixed-integer optimization to nd an optimal meal and exercise plan for the user that minimizes blood glucose levels while maximizing preferences. We then present a robust counterpart to the formulation, that minimizes blood glucose levels subject to uncertainty in the blood glucose models. We have implemented our system as an online application, and conclude by showing a demonstration of the overall program.en_US
dc.description.statementofresponsibilityby Allison Kelly O'Hair.en_US
dc.format.extent111 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectOperations Research Center.en_US
dc.titlePersonalized diabetes managementen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Operations Research Center
dc.contributor.departmentSloan School of Management
dc.identifier.oclc864012711en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record