Show simple item record

dc.contributor.advisorRudolf Jaenisch.en_US
dc.contributor.authorCassady, John Pen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Biology.en_US
dc.date.accessioned2014-01-09T18:54:39Z
dc.date.available2014-01-09T18:54:39Z
dc.date.issued2013en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/83634
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Biology, 2013.en_US
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionCataloged from student-submitted PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references.en_US
dc.description.abstractThe developmental process is carefully controlled by transcriptional and epigenetic changes that occur as a zygote transforms into an adult organism. This process can be reversed by the overexpression of transcription factors Oct4, Sox2, Klf4, and c-Myc, which reprogram a differentiated cell!s nucleus to one that is transcriptionally and epigenetically indistinguishable from an embryonic stem (ES) cell. However, it is still unclear if transcription factors can completely convert the nucleus of a differentiated cell into that of a distantly related somatic cell type with complete transcriptional and epigenetic reprogramming maintained in the absence of exogenous factor expression. To test this idea, we generated doxycyline (dox)-inducible vectors encoding neural stem cell-expressed factors. We found that stable, self-maintaining NSC-like cells could be induced under defined growth conditions. These cells were characterized in the absence of exogenous factor induction and were shown to be transcriptionally, epigenetically, and functionally similar to endogenous embryonic cortical NSCs. Additionally, a cellular system was created for reproducible generation of doxindependent iNSCs without additional factor transduction. Our results show that a transcriptionally and epigenetically reprogrammed somatic nucleus can be stabilized in vitro and provides a tool to study the mechanism of somatic cell conversion.en_US
dc.description.statementofresponsibilityby John P. Cassady.en_US
dc.format.extent144 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectBiology.en_US
dc.titleTransdifferentiation of fibroblasts to neural stem cellsen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biology
dc.identifier.oclc864878732en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record