MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The behavior of O - C curves for contact binaries in the Kepler catalog

Author(s)
Tran, Kathy, S.B. Massachusetts Institute of Technology
Thumbnail
DownloadFull printable version (6.973Mb)
Alternative title
Behavior of observed minus calculated curves for contact binaries in the Kepler catalog
Other Contributors
Massachusetts Institute of Technology. Department of Physics.
Advisor
Saul A. Rappaport.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
In this thesis, we study the timing of eclipses for contact binary systems in the Kepler catalog. Observed eclipse times were determined from Kepler long-cadence light curves and "observed minus calculated" (0 - C) curves were generated for both primary and secondary eclipses of the contact binary systems. We found the 0 - C curves of contact binaries to be clearly distinctive from the curves of other binaries. The key characteristics of these curves are random-walk like variations, with typical semi-amplitudes of 200 to 300 seconds, quasi-periodicities, and anti-correlated behavior between the curves of the primary and secondary eclipses. We performed a formal analysis of systems with dominant anti-correlated behavior, calculating correlation coefficients as low as -0.77, with a mean value of -0.42. We dismiss several physical explanations to account for the observed the anti-correlation of the 0 - C curves. Instead, we propose a simple geometric model of a starspot that is continuously visible around the orbit.
Description
Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Physics, 2013.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 71-74).
 
Date issued
2013
URI
http://hdl.handle.net/1721.1/83779
Department
Massachusetts Institute of Technology. Department of Physics
Publisher
Massachusetts Institute of Technology
Keywords
Physics.

Collections
  • Undergraduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.