MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A low cost asynchronous eye diagram reconstruction system for high speed links

Author(s)
Zheng, Shijie, M. Eng. Massachusetts Institute of Technology
Thumbnail
DownloadFull printable version (7.081Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Vladimir Stojanovic and Pablo Acosta.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
As link communication data rate increases, there is an increasing need for a more cost eective way to test and monitor signal integrity in link communication systems. Specifically, eye diagrams are valuable visual aids to analyze and quantify digital signal quality. This thesis presents a novel low cost eye diagram reconstruction system using asynchronous undersampling technique, which solves a key problem in performance monitoring in systems where synchronous sampling is not available, such as video switches. Existing works are studied and compared to this work in performance and cost. The proposed system is designed as a system-on-chip (SOC) and contains an undersampling ADC, aliased frequency estimator and a simple reconstruction algorithm. Major building blocks are implemented and simulated in 65nm CMOS process. Extensive system level analysis and simulations demonstrate functionality and performance of the system working at 10Gb/s maximum data rate.
Description
Thesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2013.
 
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Cataloged from student-submitted PDF version of thesis.
 
Includes bibliographical references (pages 97-98).
 
Date issued
2013
URI
http://hdl.handle.net/1721.1/85233
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.